/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of The University of Texas nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #define BLIS_ASM_SYNTAX_ATT #include "bli_x86_asm_macros.h" #define GROUP_YMM_BY_4 \ vmovaps(ymm15, ymm7)\ vshufps(imm(0xe4), ymm13, ymm15, ymm15)\ vshufps(imm(0xe4), ymm7, ymm13, ymm13)\ \ vmovaps(ymm11, ymm7)\ vshufps(imm(0xe4), ymm9, ymm11, ymm11)\ vshufps(imm(0xe4), ymm7, ymm9, ymm9)\ \ vmovaps(ymm14, ymm7)\ vshufps(imm(0xe4), ymm12, ymm14, ymm14)\ vshufps(imm(0xe4), ymm7, ymm12, ymm12)\ \ vmovaps(ymm10, ymm7)\ vshufps(imm(0xe4), ymm8, ymm10, ymm10)\ vshufps(imm(0xe4), ymm7, ymm8, ymm8)\ \ vmovaps(ymm15, ymm7)\ vperm2f128(imm(0x12), ymm15, ymm11, ymm15)\ vperm2f128(imm(0x30), ymm7, ymm11, ymm11)\ \ vmovaps(ymm13, ymm7)\ vperm2f128(imm(0x12), ymm13, ymm9, ymm13)\ vperm2f128(imm(0x30), ymm7, ymm9, ymm9)\ \ vmovaps(ymm14, ymm7)\ vperm2f128(imm(0x12), ymm14, ymm10, ymm14)\ vperm2f128(imm(0x30), ymm7, ymm10, ymm10)\ \ vmovaps(ymm12, ymm7)\ vperm2f128(imm(0x12), ymm12, ymm8, ymm12)\ vperm2f128(imm(0x30), ymm7, ymm8, ymm8) #define STORE_SS \ vextractf128(imm(1), ymm0, xmm2)\ vmovss(xmm0, mem(rcx))\ vpermilps(imm(0x39), xmm0, xmm1)\ vmovss(xmm1, mem(rcx, rsi, 1))\ vpermilps(imm(0x39), xmm1, xmm0)\ vmovss(xmm0, mem(rcx, r12, 1))\ vpermilps(imm(0x39), xmm0, xmm1)\ vmovss(xmm1, mem(rcx, r13, 1))\ vmovss(xmm2, mem(rdx))\ vpermilps(imm(0x39), xmm2, xmm3)\ vmovss(xmm3, mem(rdx, rsi, 1))\ vpermilps(imm(0x39), xmm3, xmm2)\ vmovss(xmm2, mem(rdx, r12, 1))\ vpermilps(imm(0x39), xmm2, xmm3)\ vmovss(xmm3, mem(rdx, r13, 1))\ void bli_sgemm_bulldozer_asm_8x8_fma4 ( dim_t m, dim_t n, dim_t k, const void* alpha, const void* a, const void* b, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //const void* a_next = bli_auxinfo_next_a( data ); //const void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k / 4; uint64_t k_left = k % 4; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; GEMM_UKR_SETUP_CT_ALIGNED( s, 8, 8, false, 32 ); begin_asm() mov(var(a), rax) // load address of a. mov(var(b), rbx) // load address of b. vmovaps(mem(rax, 0*32), ymm0) // initialize loop by pre-loading vmovsldup(mem(rbx, 0*32), ymm2) // elements of a and b. vpermilps(imm(0x4e), ymm2, ymm3) mov(var(c), rcx) // load address of c mov(var(cs_c), rdi) // load cs_c lea(mem(, rdi, 4), rdi) // cs_c *= sizeof(float) lea(mem(rcx, rdi, 4), r10) // load address of c + 4*cs_c; lea(mem(rdi, rdi, 2), r14) // r14 = 3*cs_c; prefetch(0, mem(rcx, 7*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rdi, 1, 7*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rdi, 2, 7*8)) // prefetch c + 2*cs_c prefetch(0, mem(rcx, r14, 1, 7*8)) // prefetch c + 3*cs_c prefetch(0, mem(r10, 7*8)) // prefetch c + 4*cs_c prefetch(0, mem(r10, rdi, 1, 7*8)) // prefetch c + 5*cs_c prefetch(0, mem(r10, rdi, 2, 7*8)) // prefetch c + 6*cs_c prefetch(0, mem(r10, r14, 1, 7*8)) // prefetch c + 7*cs_c vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // iteration 0 prefetch(0, mem(rax, 16*32)) vfmaddps(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovshdup(mem(rbx, 0*32), ymm2) vfmaddps(ymm13, ymm0, ymm3, ymm13) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vmovaps(mem(rax, 1*32), ymm1) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm11, ymm0, ymm4, ymm11) vfmaddps(ymm9, ymm0, ymm5, ymm9) vfmaddps(ymm14, ymm0, ymm2, ymm14) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovsldup(mem(rbx, 1*32), ymm2) vfmaddps(ymm12, ymm0, ymm3, ymm12) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm10, ymm0, ymm4, ymm10) vfmaddps(ymm8, ymm0, ymm5, ymm8) // iteration 1 vfmaddps(ymm15, ymm1, ymm2, ymm15) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovshdup(mem(rbx, 1*32), ymm2) vfmaddps(ymm13, ymm1, ymm3, ymm13) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vmovaps(mem(rax, 2*32), ymm0) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm11, ymm1, ymm4, ymm11) vfmaddps(ymm9, ymm1, ymm5, ymm9) vfmaddps(ymm14, ymm1, ymm2, ymm14) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovsldup(mem(rbx, 2*32), ymm2) vfmaddps(ymm12, ymm1, ymm3, ymm12) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm10, ymm1, ymm4, ymm10) vfmaddps(ymm8, ymm1, ymm5, ymm8) // iteration 2 prefetch(0, mem(rax, 18*32)) vfmaddps(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovshdup(mem(rbx, 2*32), ymm2) vfmaddps(ymm13, ymm0, ymm3, ymm13) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vmovaps(mem(rax, 3*32), ymm1) add(imm(4*8*4), rax) // a += 4*8 (unroll x mr) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm11, ymm0, ymm4, ymm11) vfmaddps(ymm9, ymm0, ymm5, ymm9) vfmaddps(ymm14, ymm0, ymm2, ymm14) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovsldup(mem(rbx, 3*32), ymm2) vfmaddps(ymm12, ymm0, ymm3, ymm12) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm10, ymm0, ymm4, ymm10) vfmaddps(ymm8, ymm0, ymm5, ymm8) // iteration 3 vfmaddps(ymm15, ymm1, ymm2, ymm15) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovshdup(mem(rbx, 3*32), ymm2) add(imm(4*8*4), rbx) // b += 4*8 (unroll x nr) vfmaddps(ymm13, ymm1, ymm3, ymm13) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vmovaps(mem(rax, 0*32), ymm0) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm11, ymm1, ymm4, ymm11) vfmaddps(ymm9, ymm1, ymm5, ymm9) vfmaddps(ymm14, ymm1, ymm2, ymm14) vperm2f128(imm(0x03), ymm2, ymm2, ymm4) vmovsldup(mem(rbx, 0*32), ymm2) vfmaddps(ymm12, ymm1, ymm3, ymm12) vperm2f128(imm(0x03), ymm3, ymm3, ymm5) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm10, ymm1, ymm4, ymm10) vfmaddps(ymm8, ymm1, ymm5, ymm8) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP prefetch(0, mem(rax, 16*32)) vfmaddps(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x3), ymm2, ymm2, ymm4) vmovshdup(mem(rbx, 0*32), ymm2) vfmaddps(ymm13, ymm0, ymm3, ymm13) vperm2f128(imm(0x3), ymm3, ymm3, ymm5) vmovaps(mem(rax, 1*32), ymm1) add(imm(8*1*4), rax) // a += 8 (1 x mr) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm11, ymm0, ymm4, ymm11) vfmaddps(ymm9, ymm0, ymm5, ymm9) vfmaddps(ymm14, ymm0, ymm2, ymm14) vperm2f128(imm(0x3), ymm2, ymm2, ymm4) vmovsldup(mem(rbx, 1*32), ymm2) add(imm(8*1*4), rbx) // b += 8 (1 x nr) vfmaddps(ymm12, ymm0, ymm3, ymm12) vperm2f128(imm(0x3), ymm3, ymm3, ymm5) vpermilps(imm(0x4e), ymm2, ymm3) vfmaddps(ymm10, ymm0, ymm4, ymm10) vfmaddps(ymm8, ymm0, ymm5, ymm8) vmovaps(ymm1, ymm0) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab02 ( ab04 ( ab06 // ab10 ab12 ab14 ab16 // ab22 ab20 ab26 ab24 // ab32 ab30 ab36 ab34 // ab44 ab46 ab40 ab42 // ab54 ab56 ab50 ab52 // ab66 ab64 ab62 ab60 // ab76 ) ab74 ) ab72 ) ab70 ) // ymm14: ymm12: ymm10: ymm8: // ( ab01 ( ab03 ( ab05 ( ab07 // ab11 ab13 ab15 ab17 // ab23 ab21 ab27 ab25 // ab33 ab31 ab37 ab35 // ab45 ab47 ab41 ab43 // ab55 ab57 ab51 ab53 // ab67 ab65 ab63 ab61 // ab77 ) ab75 ) ab73 ) ab71 ) GROUP_YMM_BY_4 // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab02 ( ab04 ( ab06 // ab10 ab12 ab14 ab16 // ab20 ab22 ab24 ab26 // ab30 ab32 ab34 ab36 // ab44 ab46 ab40 ab42 // ab54 ab56 ab50 ab52 // ab64 ab66 ab60 ab62 // ab74 ) ab76 ) ab70 ) ab72 ) // ymm14: ymm12: ymm10: ymm8: // ( ab01 ( ab03 ( ab05 ( ab07 // ab11 ab13 ab15 ab17 // ab21 ab23 ab25 ab27 // ab31 ab33 ab35 ab37 // ab45 ab47 ab41 ab43 // ab55 ab57 ab51 ab53 // ab65 ab67 ab61 ab63 // ab75 ) ab77 ) ab71 ) ab73 ) // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab02 ( ab04 ( ab06 // ab10 ab12 ab14 ab16 // ab20 ab22 ab24 ab26 // ab30 ab32 ab34 ab36 // ab40 ab42 ab44 ab46 // ab50 ab52 ab54 ab56 // ab60 ab62 ab64 ab66 // ab70 ) ab72 ) ab74 ) ab76 ) // ymm14: ymm12: ymm10: ymm8: // ( ab01 ( ab03 ( ab05 ( ab07 // ab11 ab13 ab15 ab17 // ab21 ab23 ab25 ab27 // ab31 ab33 ab35 ab37 // ab41 ab43 ab45 ab47 // ab51 ab53 ab55 ab57 // ab61 ab63 ab65 ab67 // ab71 ) ab73 ) ab75 ) ab77 ) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm4) // load beta and duplicate vmulps(ymm0, ymm8, ymm8) // scale by alpha vmulps(ymm0, ymm9, ymm9) vmulps(ymm0, ymm10, ymm10) vmulps(ymm0, ymm11, ymm11) vmulps(ymm0, ymm12, ymm12) vmulps(ymm0, ymm13, ymm13) vmulps(ymm0, ymm14, ymm14) vmulps(ymm0, ymm15, ymm15) // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm4) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case vmovaps(mem(rcx), ymm0) // load c00:c70, //vmulps(ymm4, ymm0, ymm0) // scale by beta, //vaddps(ymm15, ymm0, ymm0) // add the gemm result, vfmaddps(ymm15, ymm0, ymm4, ymm0) // scale by beta and add the gemm result, vmovaps(ymm0, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(mem(rcx), ymm1) // load c01:c71, //vmulps(ymm4, ymm1, ymm1) // scale by beta, //vaddps(ymm14, ymm1, ymm1) // add the gemm result, vfmaddps(ymm14, ymm1, ymm4, ymm1) // scale by beta and add the gemm result, vmovaps(ymm1, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(mem(rcx), ymm0) // load c02:c72, //vmulps(ymm4, ymm0, ymm0) // scale by beta, //vaddps(ymm13, ymm0, ymm0) // add the gemm result, vfmaddps(ymm13, ymm0, ymm4, ymm0) // scale by beta and add the gemm result, vmovaps(ymm0, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(mem(rcx), ymm1) // load c03:c73, //vmulps(ymm4, ymm1, ymm1) // scale by beta, //vaddps(ymm12, ymm1, ymm1) // add the gemm result, vfmaddps(ymm12, ymm1, ymm4, ymm1) // scale by beta and add the gemm result, vmovaps(ymm1, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(mem(rcx), ymm0) // load c04:c74, //vmulps(ymm4, ymm0, ymm0) // scale by beta, //vaddps(ymm11, ymm0, ymm0) // add the gemm result, vfmaddps(ymm11, ymm0, ymm4, ymm0) // scale by beta and add the gemm result, vmovaps(ymm0, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(mem(rcx), ymm1) // load c05:c75, //vmulps(ymm4, ymm1, ymm1) // scale by beta, //vaddps(ymm10, ymm1, ymm1) // add the gemm result, vfmaddps(ymm10, ymm1, ymm4, ymm1) // scale by beta and add the gemm result, vmovaps(ymm1, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(mem(rcx), ymm0) // load c06:c76, //vmulps(ymm4, ymm0, ymm0) // scale by beta, //vaddps(ymm9, ymm0, ymm0) // add the gemm result, vfmaddps(ymm9, ymm0, ymm4, ymm0) // scale by beta and add the gemm result, vmovaps(ymm0, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(mem(rcx), ymm1) // load c07:c77, //vmulps(ymm4, ymm1, ymm1) // scale by beta, //vaddps(ymm8, ymm1, ymm1) // add the gemm result, vfmaddps(ymm8, ymm1, ymm4, ymm1) // scale by beta and add the gemm result, vmovaps(ymm1, mem(rcx)) // and store back to memory. jmp(.SDONE) // jump to end. label(.SBETAZERO) vmovaps(ymm15, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(ymm14, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(ymm13, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(ymm12, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(ymm11, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(ymm10, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(ymm9, mem(rcx)) // and store back to memory. add(rdi, rcx) // c += cs_c; vmovaps(ymm8, mem(rcx)) // and store back to memory. label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), // 0 [k_left] "m" (k_left), // 1 [a] "m" (a), // 2 [b] "m" (b), // 3 [alpha] "m" (alpha), // 4 [beta] "m" (beta), // 5 [c] "m" (c), // 6 [rs_c] "m" (rs_c), // 7 [cs_c] "m" (cs_c)/*, // 8 [b_next] "m" (b_next), // 9 [a_next] "m" (a_next)*/ // 10 : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) GEMM_UKR_FLUSH_CT( s ); } #undef KERNEL4x6_1 #undef KERNEL4x6_2 #undef KERNEL4x6_3 #undef KERNEL4x6_4 #define KERNEL4x6_1(xx) \ ALIGN4\ vmovddup(mem(rax, -8*8), xmm0)\ vfmaddpd(xmm4, xmm1, xmm0, xmm4)\ vfmaddpd(xmm5, xmm2, xmm0, xmm5)\ vfmaddpd(xmm6, xmm3, xmm0, xmm6)\ vmovddup(mem(rax, -7*8), xmm0)\ vfmaddpd(xmm7, xmm1, xmm0, xmm7)\ prefetch(0, mem(rax, 128))\ vfmaddpd(xmm8, xmm2, xmm0, xmm8)\ vfmaddpd(xmm9, xmm3, xmm0, xmm9)\ vmovddup(mem(rax, -6*8), xmm0)\ vfmaddpd(xmm10, xmm1, xmm0, xmm10)\ vfmaddpd(xmm11, xmm2, xmm0, xmm11)\ vfmaddpd(xmm12, xmm3, xmm0, xmm12)\ vmovddup(mem(rax, -5*8), xmm0)\ vfmaddpd(xmm13, xmm1, xmm0, xmm13)\ vmovaps(mem(rbx, -6*8), xmm1)\ vfmaddpd(xmm14, xmm2, xmm0, xmm14)\ vmovaps(mem(rbx, -4*8), xmm2)\ vfmaddpd(xmm15, xmm3, xmm0, xmm15)\ vmovaps(mem(rbx, -2*8), xmm3) #define KERNEL4x6_2(xx) \ vmovddup(mem(rax, -4*8), xmm0)\ vfmaddpd(xmm4, xmm1, xmm0, xmm4)\ prefetch(0, mem(rax, 192))\ vfmaddpd(xmm5, xmm2, xmm0, xmm5)\ vfmaddpd(xmm6, xmm3, xmm0, xmm6)\ vmovddup(mem(rax, -3*8), xmm0)\ vfmaddpd(xmm7, xmm1, xmm0, xmm7)\ vfmaddpd(xmm8, xmm2, xmm0, xmm8)\ vfmaddpd(xmm9, xmm3, xmm0, xmm9)\ vmovddup(mem(rax, -2*8), xmm0)\ vfmaddpd(xmm10, xmm1, xmm0, xmm10)\ vfmaddpd(xmm11, xmm2, xmm0, xmm11)\ vfmaddpd(xmm12, xmm3, xmm0, xmm12)\ vmovddup(mem(rax, -1*8), xmm0)\ vfmaddpd(xmm13, xmm1, xmm0, xmm13)\ vmovaps(mem(rbx, 0*8), xmm1)\ vfmaddpd(xmm14, xmm2, xmm0, xmm14)\ vmovaps(mem(rbx, 2*8), xmm2)\ vfmaddpd(xmm15, xmm3, xmm0, xmm15)\ vmovaps(mem(rbx, 4*8), xmm3)\ #define KERNEL4x6_3(xx) \ vmovddup(mem(rax, 0*8), xmm0)\ vfmaddpd(xmm4, xmm1, xmm0, xmm4)\ vfmaddpd(xmm5, xmm2, xmm0, xmm5)\ vfmaddpd(xmm6, xmm3, xmm0, xmm6)\ vmovddup(mem(rax, 1*8), xmm0)\ vfmaddpd(xmm7, xmm1, xmm0, xmm7)\ prefetch(0, mem(rax, 224))\ vfmaddpd(xmm8, xmm2, xmm0, xmm8)\ vfmaddpd(xmm9, xmm3, xmm0, xmm9)\ vmovddup(mem(rax, 2*8), xmm0)\ vfmaddpd(xmm10, xmm1, xmm0, xmm10)\ vfmaddpd(xmm11, xmm2, xmm0, xmm11)\ vfmaddpd(xmm12, xmm3, xmm0, xmm12)\ vmovddup(mem(rax, 3*8), xmm0)\ vfmaddpd(xmm13, xmm1, xmm0, xmm13)\ vmovaps(mem(rbx, 6*8), xmm1)\ vfmaddpd(xmm14, xmm2, xmm0, xmm14)\ vmovaps(mem(rbx, 8*8), xmm2)\ vfmaddpd(xmm15, xmm3, xmm0, xmm15)\ vmovaps(mem(rbx, 10*8), xmm3) #define KERNEL4x6_4(xx) \ vmovddup(mem(rax, 4*8), xmm0)\ vfmaddpd(xmm4, xmm1, xmm0, xmm4)\ prefetch(0, mem(rax, 224))\ vfmaddpd(xmm5, xmm2, xmm0, xmm5)\ vfmaddpd(xmm6, xmm3, xmm0, xmm6)\ vmovddup(mem(rax, 5*8), xmm0)\ vfmaddpd(xmm7, xmm1, xmm0, xmm7)\ vfmaddpd(xmm8, xmm2, xmm0, xmm8)\ vfmaddpd(xmm9, xmm3, xmm0, xmm9)\ vmovddup(mem(rax, 6*8), xmm0)\ vfmaddpd(xmm10, xmm1, xmm0, xmm10)\ vfmaddpd(xmm11, xmm2, xmm0, xmm11)\ vfmaddpd(xmm12, xmm3, xmm0, xmm12)\ vmovddup(mem(rax, 7*8), xmm0)\ vfmaddpd(xmm13, xmm1, xmm0, xmm13)\ vmovaps(mem(rbx, 12*8), xmm1)\ vfmaddpd(xmm14, xmm2, xmm0, xmm14)\ vmovaps(mem(rbx, 14*8), xmm2)\ vfmaddpd(xmm15, xmm3, xmm0, xmm15)\ add(imm(16*8), rax)\ vmovaps(mem(rbx, 16*8), xmm3)\ add(imm(24*8), rbx) void bli_dgemm_bulldozer_asm_4x6_fma4 ( dim_t m, dim_t n, dim_t k, const void* alpha, const void* a, const void* b, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //const void* a_next = bli_auxinfo_next_a( data ); //const void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k / 12; uint64_t k_left = k % 12; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; GEMM_UKR_SETUP_CT_ANY( d, 4, 6, false ); begin_asm() vzeroall() mov(var(b), rbx) // load address of b. mov(var(a), rax) // load address of a. prefetch(0, mem(rax, 64)) vmovaps(mem(rbx, 0*8), xmm1) vmovaps(mem(rbx, 2*8), xmm2) vmovaps(mem(rbx, 4*8), xmm3) add(imm(12*8), rbx) add(imm(8*8), rax) mov(var(k_iter), rsi) // i = k_iter; notice var(k_iter) not $0 test(rsi, rsi) je(.CONSIDERKLEFT) ALIGN32 label(.LOOPKITER) // MAIN LOOP KERNEL4x6_1(xx) KERNEL4x6_2(xx) KERNEL4x6_3(xx) KERNEL4x6_4(xx) KERNEL4x6_1(xx) KERNEL4x6_2(xx) KERNEL4x6_3(xx) KERNEL4x6_4(xx) KERNEL4x6_1(xx) KERNEL4x6_2(xx) KERNEL4x6_3(xx) KERNEL4x6_4(xx) dec(rsi) jne(.LOOPKITER) label(.CONSIDERKLEFT) mov(var(k_left), rsi) test(rsi, rsi) label(.LOOPKLEFT) je(.POSTACCUM) KERNEL4x6_1(xx) add(imm(6*8), rbx) add(imm(4*8), rax) dec(rsi) jmp(.LOOPKLEFT) // iterate again if i != 0. label(.POSTACCUM) mov(var(rs_c), rsi) // load cs_c mov(var(cs_c), rdi) // load rs_c vmovddup(mem(var(alpha)), xmm2) //load alpha vmovddup(mem(var(beta)), xmm3) //load beta mov(var(c), rcx) // load address of c sal(imm(3), rsi) // cs_c *= sizeof(double) sal(imm(3), rdi) // rs_c *= sizeof(double) lea(mem(rcx, rdi, 2), rdx) vmovlpd(mem(rcx), xmm0, xmm0) vmovlpd(mem(rdx), xmm1, xmm1) vmovhpd(mem(rcx, rdi, 1), xmm0, xmm0) vmovhpd(mem(rdx, rdi, 1), xmm1, xmm1) lea(mem(rdx, rdi, 2), r8) vmulpd(xmm2, xmm4, xmm4) // scale by alpha, vmulpd(xmm2, xmm5, xmm5) // scale by alpha, vfmaddpd(xmm4, xmm0, xmm3, xmm4) // scale by beta, and add the gemm result vmovlpd(mem(r8), xmm0, xmm0) vfmaddpd(xmm5, xmm1, xmm3, xmm5) // scale by beta, and add the gemm result vmovhpd(mem(r8, rdi, 1), xmm0, xmm0) vmovlpd(xmm4, mem(rcx)) // and store back to memory. vmovlpd(xmm5, mem(rdx)) // and store back to memory. vmovhpd(xmm4, mem(rcx, rdi, 1)) add(rsi, rcx) vmovhpd(xmm5, mem(rdx, rdi, 1)) add(rsi, rdx) vmulpd(xmm2, xmm6, xmm6) // scale by alpha, vfmaddpd(xmm6, xmm0, xmm3, xmm6) // scale by beta, and add the gemm result vmovlpd(xmm6, mem(r8)) // and store back to memory. vmovhpd(xmm6, mem(r8, rdi, 1)) add(rsi, r8) vmovlpd(mem(rcx), xmm0, xmm0) vmovlpd(mem(rdx), xmm1, xmm1) vmovlpd(mem(r8), xmm4, xmm4) vmovhpd(mem(rcx, rdi, 1), xmm0, xmm0) vmovhpd(mem(rdx, rdi, 1), xmm1, xmm1) vmovhpd(mem(r8, rdi, 1), xmm4, xmm4) vmulpd(xmm2, xmm7, xmm7) // scale by alpha, vmulpd(xmm2, xmm8, xmm8) // scale by alpha, vmulpd(xmm2, xmm9, xmm9) // scale by alpha, vfmaddpd(xmm7, xmm0, xmm3, xmm7) // scale by beta, and add the gemm result vfmaddpd(xmm8, xmm1, xmm3, xmm8) // scale by beta, and add the gemm result vfmaddpd(xmm9, xmm4, xmm3, xmm9) // scale by beta, and add the gemm result vmovlpd(xmm7, mem(rcx)) // and store back to memory. vmovlpd(xmm8, mem(rdx)) // and store back to memory. vmovlpd(xmm9, mem(r8)) // and store back to memory. vmovhpd(xmm7, mem(rcx, rdi, 1)) add(rsi, rcx) vmovhpd(xmm8, mem(rdx, rdi, 1)) add(rsi, rdx) vmovhpd(xmm9, mem(r8, rdi, 1)) add(rsi, r8) vmovlpd(mem(rcx), xmm0, xmm0) vmovlpd(mem(rdx), xmm1, xmm1) vmovlpd(mem(r8), xmm4, xmm4) vmovhpd(mem(rcx, rdi, 1), xmm0, xmm0) vmovhpd(mem(rdx, rdi, 1), xmm1, xmm1) vmovhpd(mem(r8, rdi, 1), xmm4, xmm4) vmulpd(xmm2, xmm10, xmm10) // scale by alpha, vmulpd(xmm2, xmm11, xmm11) // scale by alpha, vmulpd(xmm2, xmm12, xmm12) // scale by alpha, vfmaddpd(xmm10, xmm0, xmm3, xmm10) // scale by beta, and add the gemm result vfmaddpd(xmm11, xmm1, xmm3, xmm11) // scale by beta, and add the gemm result vfmaddpd(xmm12, xmm4, xmm3, xmm12) // scale by beta, and add the gemm result vmovlpd(xmm10, mem(rcx)) // and store back to memory. vmovlpd(xmm11, mem(rdx)) // and store back to memory. vmovlpd(xmm12, mem(r8)) // and store back to memory. vmovhpd(xmm10, mem(rcx, rdi, 1)) add(rsi, rcx) vmovhpd(xmm11, mem(rdx, rdi, 1)) add(rsi, rdx) vmovhpd(xmm12, mem(r8, rdi, 1)) add(rsi, r8) vmovlpd(mem(rcx), xmm0, xmm0) vmovlpd(mem(rdx), xmm1, xmm1) vmovlpd(mem(r8), xmm4, xmm4) vmovhpd(mem(rcx, rdi, 1), xmm0, xmm0) vmovhpd(mem(rdx, rdi, 1), xmm1, xmm1) vmovhpd(mem(r8, rdi, 1), xmm4, xmm4) vmulpd(xmm2, xmm13, xmm13) // scale by alpha, vmulpd(xmm2, xmm14, xmm14) // scale by alpha, vmulpd(xmm2, xmm15, xmm15) // scale by alpha, vfmaddpd(xmm13, xmm0, xmm3, xmm13) // scale by beta, and add the gemm result vfmaddpd(xmm14, xmm1, xmm3, xmm14) // scale by beta, and add the gemm result vfmaddpd(xmm15, xmm4, xmm3, xmm15) // scale by beta, and add the gemm result vmovlpd(xmm13, mem(rcx)) // and store back to memory. vmovlpd(xmm14, mem(rdx)) // and store back to memory. vmovlpd(xmm15, mem(r8)) // and store back to memory. vmovhpd(xmm13, mem(rcx, rdi, 1)) vmovhpd(xmm14, mem(rdx, rdi, 1)) vmovhpd(xmm15, mem(r8, rdi, 1)) end_asm( : // output operands (none) : // input operands [k_iter] "r" (k_iter), // 0 [k_left] "r" (k_left), // 1 [a] "r" (a), // 2 [b] "r" (b), // 3 [alpha] "r" (alpha), // 4 [beta] "r" (beta), // 5 [c] "r" (c), // 6 [rs_c] "m" (rs_c), // 7 [cs_c] "m" (cs_c)/*, // 8 [b_next] "m" (b_next), // 9 [a_next] "m" (a_next)*/ // 10 : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) GEMM_UKR_FLUSH_CT( d ); } //The parameter "i" is the iteration number, i.e. the B values to read #define MADD_TO_YMM(i) \ vfmaddps(ymm15, ymm0, ymm2, ymm15)\ vperm2f128(imm(0x3), ymm2, ymm2, ymm4)\ vfmaddps(ymm13, ymm0, ymm3, ymm13)\ vperm2f128(imm(0x3), ymm3, ymm3, ymm5)\ vfmaddps(ymm14, ymm1, ymm2, ymm14)\ vmovshdup(mem(rbx, i*32), ymm2)\ vfmaddps(ymm12, ymm1, ymm3, ymm12)\ vpermilps(imm(0x4e), ymm2, ymm3)\ vfmaddps(ymm11, ymm0, ymm4, ymm11)\ vfmaddps(ymm9, ymm0, ymm5, ymm9)\ vpermilps(imm(0xb1), ymm0, ymm0)\ vfmaddps(ymm10, ymm1, ymm4, ymm10)\ vperm2f128(imm(0x3), ymm2, ymm2, ymm4)\ vfmaddps(ymm8, ymm1, ymm5, ymm8)\ vperm2f128(imm(0x3), ymm3, ymm3, ymm5)\ void bli_cgemm_bulldozer_asm_8x4_fma4 ( dim_t m, dim_t n, dim_t k, const void* alpha, const void* a, const void* b, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //const void* a_next = bli_auxinfo_next_a( data ); const void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k / 4; uint64_t k_left = k % 4; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; GEMM_UKR_SETUP_CT_ALIGNED( c, 8, 4, false, 32 ); begin_asm() mov(var(a), rax) // load address of a. mov(var(b), rbx) // load address of b. mov(var(b_next), r15) // load address of b_next. //mov(var(a_next), r14) // load address of a_next. sub(imm(4*64), r15) vmovaps(mem(rax, 0*32), ymm0) // initialize loop by pre-loading vmovsldup(mem(rbx, 0*32), ymm2) vpermilps(imm(0x4e), ymm2, ymm3) mov(var(c), rcx) // load address of c mov(var(cs_c), rdi) // load cs_c lea(mem(, rdi, 8), rdi) // cs_c *= sizeof(scomplex) lea(mem(rcx, rdi, 2), r10) // load address of c + 2*cs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*cs_c prefetch(0, mem(r10, 3*8)) // prefetch c + 2*cs_c prefetch(0, mem(r10, rdi, 1, 3*8)) // prefetch c + 3*cs_c vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.CCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.CLOOPKITER) // MAIN LOOP add(imm(4*4*8), r15) // b_next += 4*4 (unroll x nr) // iteration 0 prefetch(0, mem(rax, 8*32)) vmovaps(mem(rax, 1*32), ymm1) MADD_TO_YMM(0) vpermilps(imm(0xb1), ymm1, ymm1) vmulps(ymm0, ymm2, ymm6) vaddsubps(ymm6, ymm15, ymm15) vmulps(ymm0, ymm3, ymm7) vaddsubps(ymm7, ymm13, ymm13) vmulps(ymm1, ymm2, ymm6) vmovsldup(mem(rbx, 1*32), ymm2) vmulps(ymm1, ymm3, ymm7) vpermilps(imm(0x4e), ymm2, ymm3) vaddsubps(ymm6, ymm14, ymm14) vaddsubps(ymm7, ymm12, ymm12) vmulps(ymm0, ymm4, ymm6) vmulps(ymm0, ymm5, ymm7) vmovaps(mem(rax, 2*32), ymm0) vaddsubps(ymm6, ymm11, ymm11) vaddsubps(ymm7, ymm9, ymm9) vmulps(ymm1, ymm4, ymm6) vmulps(ymm1, ymm5, ymm7) vaddsubps(ymm6, ymm10, ymm10) vaddsubps(ymm7, ymm8, ymm8) // iteration 1 prefetch(0, mem(rax, 10*32)) vmovaps(mem(rax, 3*32), ymm1) MADD_TO_YMM(1) vpermilps(imm(0xb1), ymm1, ymm1) vmulps(ymm0, ymm2, ymm6) vmulps(ymm0, ymm3, ymm7) vaddsubps(ymm6, ymm15, ymm15) vaddsubps(ymm7, ymm13, ymm13) vmulps(ymm1, ymm2, ymm6) vmovsldup(mem(rbx, 2*32), ymm2) vmulps(ymm1, ymm3, ymm7) vpermilps(imm(0x4e), ymm2, ymm3) vaddsubps(ymm6, ymm14, ymm14) vaddsubps(ymm7, ymm12, ymm12) vmulps(ymm0, ymm4, ymm6) vmulps(ymm0, ymm5, ymm7) vmovaps(mem(rax, 4*32), ymm0) vaddsubps(ymm6, ymm11, ymm11) vaddsubps(ymm7, ymm9, ymm9) vmulps(ymm1, ymm4, ymm6) vmulps(ymm1, ymm5, ymm7) vaddsubps(ymm6, ymm10, ymm10) vaddsubps(ymm7, ymm8, ymm8) // iteration 2 prefetch(0, mem(rax, 12*32)) vmovaps(mem(rax, 5*32), ymm1) MADD_TO_YMM(2) prefetch(0, mem(r15, 2*32)) // prefetch b_next[2*4] vpermilps(imm(0xb1), ymm1, ymm1) vmulps(ymm0, ymm2, ymm6) vmulps(ymm0, ymm3, ymm7) vaddsubps(ymm6, ymm15, ymm15) vaddsubps(ymm7, ymm13, ymm13) vmulps(ymm1, ymm2, ymm6) vmovsldup(mem(rbx, 3*32), ymm2) vmulps(ymm1, ymm3, ymm7) vpermilps(imm(0x4e), ymm2, ymm3) vaddsubps(ymm6, ymm14, ymm14) vaddsubps(ymm7, ymm12, ymm12) vmulps(ymm0, ymm4, ymm6) vmulps(ymm0, ymm5, ymm7) vmovaps(mem(rax, 6*32), ymm0) vaddsubps(ymm6, ymm11, ymm11) vaddsubps(ymm7, ymm9, ymm9) vmulps(ymm1, ymm4, ymm6) vmulps(ymm1, ymm5, ymm7) vaddsubps(ymm6, ymm10, ymm10) vaddsubps(ymm7, ymm8, ymm8) // iteration 3 prefetch(0, mem(rax, 14*32)) vmovaps(mem(rax, 7*32), ymm1) MADD_TO_YMM(3) vpermilps(imm(0xb1), ymm1, ymm1) vmulps(ymm0, ymm2, ymm6) vmulps(ymm0, ymm3, ymm7) vaddsubps(ymm6, ymm15, ymm15) vaddsubps(ymm7, ymm13, ymm13) vmulps(ymm1, ymm2, ymm6) vmovsldup(mem(rbx, 4*32), ymm2) vmulps(ymm1, ymm3, ymm7) vpermilps(imm(0x4e), ymm2, ymm3) vaddsubps(ymm6, ymm14, ymm14) vaddsubps(ymm7, ymm12, ymm12) vmulps(ymm0, ymm4, ymm6) vmulps(ymm0, ymm5, ymm7) vmovaps(mem(rax, 8*32), ymm0) vaddsubps(ymm6, ymm11, ymm11) vaddsubps(ymm7, ymm9, ymm9) vmulps(ymm1, ymm4, ymm6) vmulps(ymm1, ymm5, ymm7) vaddsubps(ymm6, ymm10, ymm10) vaddsubps(ymm7, ymm8, ymm8) add(imm(8*4*8), rax) // a += 8*4 (unroll x mr) add(imm(4*4*8), rbx) // b += 4*4 (unroll x nr) dec(rsi) // i -= 1; jne(.CLOOPKITER) // iterate again if i != 0. label(.CCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.CPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.CLOOPKLEFT) // EDGE LOOP // iteration 0 prefetch(0, mem(rax, 8*32)) vmovaps(mem(rax, 1*32), ymm1) MADD_TO_YMM(0) vpermilps(imm(0xb1), ymm1, ymm1) vmulps(ymm0, ymm2, ymm6) vmulps(ymm0, ymm3, ymm7) vaddsubps(ymm6, ymm15, ymm15) vaddsubps(ymm7, ymm13, ymm13) vmulps(ymm1, ymm2, ymm6) vmovsldup(mem(rbx, 1*32), ymm2) vmulps(ymm1, ymm3, ymm7) vpermilps(imm(0x4e), ymm2, ymm3) vaddsubps(ymm6, ymm14, ymm14) vaddsubps(ymm7, ymm12, ymm12) vmulps(ymm0, ymm4, ymm6) vmulps(ymm0, ymm5, ymm7) vmovaps(mem(rax, 2*32), ymm0) vaddsubps(ymm6, ymm11, ymm11) vaddsubps(ymm7, ymm9, ymm9) vmulps(ymm1, ymm4, ymm6) vmulps(ymm1, ymm5, ymm7) vaddsubps(ymm6, ymm10, ymm10) vaddsubps(ymm7, ymm8, ymm8) add(imm(8*1*8), rax) // a += 8 (1 x mr) add(imm(4*1*8), rbx) // b += 4 (1 x nr) dec(rsi) // i -= 1; jne(.CLOOPKLEFT) // iterate again if i != 0. label(.CPOSTACCUM) // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab01 ( ab02 ( ab03 // ab10 ab11 ab12 ab13 // ab21 ab20 ab23 ab22 // ab31 ab30 ab33 ab32 // ab42 ab43 ab40 ab41 // ab52 ab53 ab50 ab51 // ab63 ab62 ab61 ab60 // ab73 ) ab72 ) ab71 ) ab70 ) // ymm14: ymm12: ymm10: ymm8: // ( ab80 ( ab81 ( ab82 ( ab83 // ab90 ab91 ab92 ab93 // aba1 aba0 aba3 aba2 // abb1 abb0 abb3 abb2 // abc2 abc3 abc0 abc1 // abd2 abd3 abd0 abd1 // abe3 abe2 abe1 abe0 // abf3 abf2 abf1 abf0 ) GROUP_YMM_BY_4 // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab01 ( ab02 ( ab03 // ab10 ab11 ab12 ab13 // ab20 ab21 ab22 ab23 // ab30 ab31 ab32 ab33 // ab42 ab43 ab40 ab41 // ab52 ab53 ab50 ab51 // ab62 ab63 ab60 ab61 // ab72 ) ab73 ) ab70 ) ab71 ) // ymm14: ymm12: ymm10: ymm8: // ( ab80 ( ab81 ( ab82 ( ab83 // ab90 ab91 ab92 ab93 // aba0 aba1 aba2 aba3 // abb0 abb1 abb2 abb3 // abc2 abc3 abc0 abc1 // abd2 abd3 abd0 abd1 // abe2 abe3 abe0 abe1 // abf2 ) abf3 ) abf0 ) abf1 ) // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab01 ( ab02 ( ab03 // ab10 ab11 ab12 ab13 // ab20 ab21 ab22 ab23 // ab30 ab31 ab32 ab33 // ab40 ab41 ab42 ab43 // ab50 ab51 ab52 ab53 // ab60 ab61 ab62 ab63 // ab70 ) ab71 ) ab72 ) ab73 ) // ymm14: ymm12: ymm10: ymm8: // ( ab80 ( ab81 ( ab82 ( ab83 // ab90 ab91 ab92 ab93 // aba0 aba1 aba2 aba3 // abb0 abb1 abb2 abb3 // abc0 abc1 abc2 abc3 // abd0 abd1 abd2 abd3 // abe0 abe1 abe2 abe3 // abf0 ) abf1 ) abf2 ) abf3 ) // scale by alpha mov(var(alpha), rax) // load address of alpha vbroadcastss(mem(rax), ymm7) // load alpha_r and duplicate vbroadcastss(mem(rax, 4), ymm6) // load alpha_i and duplicate vpermilps(imm(0xb1), ymm15, ymm3) vmulps(ymm7, ymm15, ymm15) vmulps(ymm6, ymm3, ymm3) vaddsubps(ymm3, ymm15, ymm15) vpermilps(imm(0xb1), ymm14, ymm2) vmulps(ymm7, ymm14, ymm14) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm14, ymm14) vpermilps(imm(0xb1), ymm13, ymm1) vmulps(ymm7, ymm13, ymm13) vmulps(ymm6, ymm1, ymm1) vaddsubps(ymm1, ymm13, ymm13) vpermilps(imm(0xb1), ymm12, ymm0) vmulps(ymm7, ymm12, ymm12) vmulps(ymm6, ymm0, ymm0) vaddsubps(ymm0, ymm12, ymm12) vpermilps(imm(0xb1), ymm11, ymm3) vmulps(ymm7, ymm11, ymm11) vmulps(ymm6, ymm3, ymm3) vaddsubps(ymm3, ymm11, ymm11) vpermilps(imm(0xb1), ymm10, ymm2) vmulps(ymm7, ymm10, ymm10) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm10, ymm10) vpermilps(imm(0xb1), ymm9, ymm1) vmulps(ymm7, ymm9, ymm9) vmulps(ymm6, ymm1, ymm1) vaddsubps(ymm1, ymm9, ymm9) vpermilps(imm(0xb1), ymm8, ymm0) vmulps(ymm7, ymm8, ymm8) vmulps(ymm6, ymm0, ymm0) vaddsubps(ymm0, ymm8, ymm8) mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rbx), ymm7) // load beta_r and duplicate vbroadcastss(mem(rbx, 4), ymm6) // load beta_i and duplicate // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm7) // set ZF if beta_r == 0. sete(r8b) // r8b = ( ZF == 1 ? 1 : 0 ); vucomiss(xmm0, xmm6) // set ZF if beta_i == 0. sete(r9b) // r9b = ( ZF == 1 ? 1 : 0 ); and(r8b, r9b) // set ZF if r8b & r9b == 1. jne(.CBETAZERO) // if ZF = 0, jump to beta == 0 case // update c00:c70 vmovaps(mem(rcx), ymm0) // load c00:c70 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm15, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx)) // store c00:c70 // update c80:cf0 vmovaps(mem(rcx,32), ymm0) // load c80:f0 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm14, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx,32)) // store c80:cf0 add(rdi, rcx) // c += cs_c; // update c00:c70 vmovaps(mem(rcx), ymm0) // load c01:c71 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm13, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx)) // store c01:c71 // update c81:cf1 vmovaps(mem(rcx,32), ymm0) // load c81:f1 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm12, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx,32)) // store c81:cf1 add(rdi, rcx) // c += cs_c; // update c02:c72 vmovaps(mem(rcx), ymm0) // load c02:c72 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm11, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx)) // store c02:c72 // update c82:cf2 vmovaps(mem(rcx,32), ymm0) // load c82:f2 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm10, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx,32)) // store c82:cf2 add(rdi, rcx) // c += cs_c; // update c03:c73 vmovaps(mem(rcx), ymm0) // load c03:c73 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm9, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx)) // store c03:c73 // update c83:cf3 vmovaps(mem(rcx,32), ymm0) // load c83:f3 into ymm0 vpermilps(imm(0xb1), ymm0, ymm2) // scale ymm0 by beta vmulps(ymm7, ymm0, ymm0) vmulps(ymm6, ymm2, ymm2) vaddsubps(ymm2, ymm0, ymm0) vaddps(ymm8, ymm0, ymm0) // add the gemm result to ymm0 vmovaps(ymm0, mem(rcx,32)) // store c83:cf3 //add(rdi, rcx) // c += cs_c; jmp(.CDONE) // jump to end. label(.CBETAZERO) vmovaps(ymm15, mem(rcx)) // store c00:c70 vmovaps(ymm14, mem(rcx,32)) // store c80:cf0 add(rdi, rcx) // c += cs_c; vmovaps(ymm13, mem(rcx)) // store c01:c71 vmovaps(ymm12, mem(rcx,32)) // store c81:cf1 add(rdi, rcx) // c += cs_c; vmovaps(ymm11, mem(rcx)) // store c02:c72 vmovaps(ymm10, mem(rcx,32)) // store c82:cf2 add(rdi, rcx) // c += cs_c; vmovaps(ymm9, mem(rcx)) // store c03:c73 vmovaps(ymm8, mem(rcx,32)) // store c83:cf3 add(rdi, rcx) // c += cs_c; label(.CDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), // 0 [k_left] "m" (k_left), // 1 [a] "m" (a), // 2 [b] "m" (b), // 3 [alpha] "m" (alpha), // 4 [beta] "m" (beta), // 5 [c] "m" (c), // 6 [rs_c] "m" (rs_c), // 7 [cs_c] "m" (cs_c), // 8 [b_next] "m" (b_next)/*, // 9 [a_next] "m" (a_next)*/ // 10 : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15", "memory" ) GEMM_UKR_FLUSH_CT( c ); } #define MADDSUBPD_TO_YMM \ vfmaddpd(ymm13, ymm0, ymm4, ymm13)\ vfmaddpd(ymm9, ymm0, ymm5, ymm9)\ vpermilpd(imm(0x5), ymm0, ymm0)\ \ vfmaddpd(ymm12, ymm1, ymm4, ymm12)\ vperm2f128(imm(0x3), ymm2, ymm2, ymm4)\ vfmaddpd(ymm8, ymm1, ymm5, ymm8)\ vperm2f128(imm(0x3), ymm3, ymm3, ymm5)\ \ vpermilpd(imm(0x5), ymm1, ymm1)\ vmulpd(ymm0, ymm2, ymm6)\ vmulpd(ymm0, ymm3, ymm7)\ vaddsubpd(ymm6, ymm15, ymm15)\ vaddsubpd(ymm7, ymm11, ymm11)\ \ #define Z_ALPHA(i, j) \ vpermilpd(imm(0x5), ymm(i), ymm(j))\ vmulpd(ymm7, ymm(i), ymm(i))\ vmulpd(ymm6, ymm(j), ymm(j))\ vaddsubpd(ymm(j), ymm(i), ymm(i))\ void bli_zgemm_bulldozer_asm_4x4_fma4 ( dim_t m, dim_t n, dim_t k, const void* alpha, const void* a, const void* b, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //const void* a_next = bli_auxinfo_next_a( data ); //const void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k / 4; uint64_t k_left = k % 4; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; GEMM_UKR_SETUP_CT_ALIGNED( z, 4, 4, false, 32 ); begin_asm() mov(var(a), rax) // load address of a. mov(var(b), rbx) // load address of b. //mov(var(b_next), r15) // load address of b_next. //mov(var(a_next), r14) // load address of a_next. vmovapd(mem(rax, 0*32), ymm0) // initialize loop by pre-loading vmovddup(mem(rbx, 0+0*32), ymm2) vmovddup(mem(rbx, 0+1*32), ymm3) mov(var(c), rcx) // load address of c mov(var(cs_c), rdi) // load cs_c lea(mem(, rdi, 8), rdi) // cs_c *= sizeof(dcomplex) lea(mem(, rdi, 2), rdi) lea(mem(rcx, rdi, 2), r10) // load address of c + 2*cs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*cs_c prefetch(0, mem(r10, 3*8)) // prefetch c + 2*cs_c prefetch(0, mem(r10, rdi, 1, 3*8)) // prefetch c + 3*cs_c vxorpd(ymm8, ymm8, ymm8) vxorpd(ymm9, ymm9, ymm9) vxorpd(ymm10, ymm10, ymm10) vxorpd(ymm11, ymm11, ymm11) vxorpd(ymm12, ymm12, ymm12) vxorpd(ymm13, ymm13, ymm13) vxorpd(ymm14, ymm14, ymm14) vxorpd(ymm15, ymm15, ymm15) mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.ZCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.ZLOOPKITER) // MAIN LOOP // iteration 0 vmovapd(mem(rax, 1*32), ymm1) vfmaddpd(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x3), ymm2, ymm2, ymm4) vfmaddpd(ymm11, ymm0, ymm3, ymm11) vperm2f128(imm(0x3), ymm3, ymm3, ymm5) prefetch(0, mem(rax, 16*32)) vfmaddpd(ymm14, ymm1, ymm2, ymm14) vmovddup(mem(rbx, 8+0*32), ymm2) vfmaddpd(ymm10, ymm1, ymm3, ymm10) vmovddup(mem(rbx, 8+1*32), ymm3) MADDSUBPD_TO_YMM vmulpd(ymm1, ymm2, ymm6) vmovddup(mem(rbx, 0+2*32), ymm2) vmulpd(ymm1, ymm3, ymm7) vmovddup(mem(rbx, 0+3*32), ymm3) vaddsubpd(ymm6, ymm14, ymm14) vaddsubpd(ymm7, ymm10, ymm10) vmulpd(ymm0, ymm4, ymm6) vmulpd(ymm0, ymm5, ymm7) vmovapd(mem(rax, 2*32), ymm0) vaddsubpd(ymm6, ymm13, ymm13) vaddsubpd(ymm7, ymm9, ymm9) vmulpd(ymm1, ymm4, ymm6) vmulpd(ymm1, ymm5, ymm7) vaddsubpd(ymm6, ymm12, ymm12) vaddsubpd(ymm7, ymm8, ymm8) // iteration 1 vmovapd(mem(rax, 3*32), ymm1) vfmaddpd(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x3), ymm2, ymm2, ymm4) vfmaddpd(ymm11, ymm0, ymm3, ymm11) vperm2f128(imm(0x3), ymm3, ymm3, ymm5) prefetch(0, mem(rax, 18*32)) vfmaddpd(ymm14, ymm1, ymm2, ymm14) vmovddup(mem(rbx, 8+2*32), ymm2) vfmaddpd(ymm10, ymm1, ymm3, ymm10) vmovddup(mem(rbx, 8+3*32), ymm3) MADDSUBPD_TO_YMM vmulpd(ymm1, ymm2, ymm6) vmovddup(mem(rbx, 0+4*32), ymm2) vmulpd(ymm1, ymm3, ymm7) vmovddup(mem(rbx, 0+5*32), ymm3) vaddsubpd(ymm6, ymm14, ymm14) vaddsubpd(ymm7, ymm10, ymm10) vmulpd(ymm0, ymm4, ymm6) vmulpd(ymm0, ymm5, ymm7) vmovapd(mem(rax, 4*32), ymm0) vaddsubpd(ymm6, ymm13, ymm13) vaddsubpd(ymm7, ymm9, ymm9) vmulpd(ymm1, ymm4, ymm6) vmulpd(ymm1, ymm5, ymm7) vaddsubpd(ymm6, ymm12, ymm12) vaddsubpd(ymm7, ymm8, ymm8) // iteration 2 vmovapd(mem(rax, 5*32), ymm1) vfmaddpd(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x3), ymm2, ymm2, ymm4) vfmaddpd(ymm11, ymm0, ymm3, ymm11) vperm2f128(imm(0x3), ymm3, ymm3, ymm5) prefetch(0, mem(rax, 20*32)) vfmaddpd(ymm14, ymm1, ymm2, ymm14) vmovddup(mem(rbx, 8+4*32), ymm2) vfmaddpd(ymm10, ymm1, ymm3, ymm10) vmovddup(mem(rbx, 8+5*32), ymm3) MADDSUBPD_TO_YMM vmulpd(ymm1, ymm2, ymm6) vmovddup(mem(rbx, 0+6*32), ymm2) vmulpd(ymm1, ymm3, ymm7) vmovddup(mem(rbx, 0+7*32), ymm3) vaddsubpd(ymm6, ymm14, ymm14) vaddsubpd(ymm7, ymm10, ymm10) vmulpd(ymm0, ymm4, ymm6) vmulpd(ymm0, ymm5, ymm7) vmovapd(mem(rax, 6*32), ymm0) vaddsubpd(ymm6, ymm13, ymm13) vaddsubpd(ymm7, ymm9, ymm9) vmulpd(ymm1, ymm4, ymm6) vmulpd(ymm1, ymm5, ymm7) vaddsubpd(ymm6, ymm12, ymm12) vaddsubpd(ymm7, ymm8, ymm8) // iteration 3 vmovapd(mem(rax, 7*32), ymm1) vfmaddpd(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x3), ymm2, ymm2, ymm4) vfmaddpd(ymm11, ymm0, ymm3, ymm11) vperm2f128(imm(0x3), ymm3, ymm3, ymm5) prefetch(0, mem(rax, 22*32)) vfmaddpd(ymm14, ymm1, ymm2, ymm14) vmovddup(mem(rbx, 8+6*32), ymm2) vfmaddpd(ymm10, ymm1, ymm3, ymm10) vmovddup(mem(rbx, 8+7*32), ymm3) MADDSUBPD_TO_YMM vmulpd(ymm1, ymm2, ymm6) vmovddup(mem(rbx, 0+8*32), ymm2) vmulpd(ymm1, ymm3, ymm7) vmovddup(mem(rbx, 0+9*32), ymm3) vaddsubpd(ymm6, ymm14, ymm14) vaddsubpd(ymm7, ymm10, ymm10) vmulpd(ymm0, ymm4, ymm6) vmulpd(ymm0, ymm5, ymm7) vmovapd(mem(rax, 8*32), ymm0) vaddsubpd(ymm6, ymm13, ymm13) vaddsubpd(ymm7, ymm9, ymm9) vmulpd(ymm1, ymm4, ymm6) vmulpd(ymm1, ymm5, ymm7) vaddsubpd(ymm6, ymm12, ymm12) vaddsubpd(ymm7, ymm8, ymm8) add(imm(4*4*16), rbx) // b += 4*4 (unroll x nr) add(imm(4*4*16), rax) // a += 4*4 (unroll x mr) dec(rsi) // i -= 1; jne(.ZLOOPKITER) // iterate again if i != 0. label(.ZCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.ZPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.ZLOOPKLEFT) // EDGE LOOP // iteration 0 vmovapd(mem(rax, 1*32), ymm1) vfmaddpd(ymm15, ymm0, ymm2, ymm15) vperm2f128(imm(0x3), ymm2, ymm2, ymm4) vfmaddpd(ymm11, ymm0, ymm3, ymm11) vperm2f128(imm(0x3), ymm3, ymm3, ymm5) prefetch(0, mem(rax, 16*32)) vfmaddpd(ymm14, ymm1, ymm2, ymm14) vmovddup(mem(rbx, 8+0*32), ymm2) vfmaddpd(ymm10, ymm1, ymm3, ymm10) vmovddup(mem(rbx, 8+1*32), ymm3) MADDSUBPD_TO_YMM vmulpd(ymm1, ymm2, ymm6) vmovddup(mem(rbx, 0+2*32), ymm2) vmulpd(ymm1, ymm3, ymm7) vmovddup(mem(rbx, 0+3*32), ymm3) vaddsubpd(ymm6, ymm14, ymm14) vaddsubpd(ymm7, ymm10, ymm10) vmulpd(ymm0, ymm4, ymm6) vmulpd(ymm0, ymm5, ymm7) vmovapd(mem(rax, 2*32), ymm0) vaddsubpd(ymm6, ymm13, ymm13) vaddsubpd(ymm7, ymm9, ymm9) vmulpd(ymm1, ymm4, ymm6) vmulpd(ymm1, ymm5, ymm7) vaddsubpd(ymm6, ymm12, ymm12) vaddsubpd(ymm7, ymm8, ymm8) add(imm(4*1*16), rax) // a += 4 (1 x mr) add(imm(4*1*16), rbx) // b += 4 (1 x nr) dec(rsi) // i -= 1; jne(.ZLOOPKLEFT) // iterate again if i != 0. label(.ZPOSTACCUM) // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab01 ( ab02 ( ab03 // ab10 ab11 ab12 ab13 // ab21 ab20 ab23 ab22 // ab31 ) ab30 ) ab33 ) ab32 ) // ymm14: ymm12: ymm10: ymm8: // ( ab40 ( ab41 ( ab42 ( ab43 // ab50 ab51 ab52 ab53 // ab61 ab60 ab63 ab62 // ab71 ) ab70 ) ab73 ) ab72 ) vmovapd(ymm15, ymm7) vperm2f128(imm(0x12), ymm15, ymm13, ymm15) vperm2f128(imm(0x30), ymm7, ymm13, ymm13) vmovapd(ymm11, ymm7) vperm2f128(imm(0x12), ymm11, ymm9, ymm11) vperm2f128(imm(0x30), ymm7, ymm9, ymm9) vmovapd(ymm14, ymm7) vperm2f128(imm(0x12), ymm14, ymm12, ymm14) vperm2f128(imm(0x30), ymm7, ymm12, ymm12) vmovapd(ymm10, ymm7) vperm2f128(imm(0x12), ymm10, ymm8, ymm10) vperm2f128(imm(0x30), ymm7, ymm8, ymm8) // ymm15: ymm13: ymm11: ymm9: // ( ab00 ( ab01 ( ab02 ( ab03 // ab10 ab11 ab12 ab13 // ab20 ab21 ab22 ab23 // ab30 ) ab31 ) ab32 ) ab33 ) // ymm14: ymm12: ymm10: ymm8: // ( ab40 ( ab41 ( ab42 ( ab43 // ab50 ab51 ab52 ab53 // ab60 ab61 ab62 ab63 // ab70 ) ab71 ) ab72 ) ab73 ) // scale by alpha mov(var(alpha), rax) // load address of alpha vbroadcastsd(mem(rax), ymm7) // load alpha_r and duplicate vbroadcastsd(mem(rax, 8), ymm6) // load alpha_i and duplicate Z_ALPHA(15, 3) Z_ALPHA(14, 2) Z_ALPHA(13, 1) Z_ALPHA(12, 0) Z_ALPHA(11, 3) Z_ALPHA(10, 2) Z_ALPHA(9, 1) Z_ALPHA(8, 0) mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rbx), ymm7) // load beta_r and duplicate vbroadcastsd(mem(rbx, 8), ymm6) // load beta_i and duplicate // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm7) // set ZF if beta_r == 0. sete(r8b) // r8b = ( ZF == 1 ? 1 : 0 ); vucomisd(xmm0, xmm6) // set ZF if beta_i == 0. sete(r9b) // r9b = ( ZF == 1 ? 1 : 0 ); and(r8b, r9b) // set ZF if r8b & r9b == 1. jne(.ZBETAZERO) // if ZF = 0, jump to beta == 0 case // update c00:c30 vmovapd(mem(rcx), ymm0) // load c00:c30 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm15, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx)) // store c00:c30 // update c40:c70 vmovapd(mem(rcx,32), ymm0) // load c40:c70 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm14, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx,32)) // store c40:c70 add(rdi, rcx) // c += cs_c; // update c01:c31 vmovapd(mem(rcx), ymm0) // load c01:c31 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm13, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx)) // store c01:c31 // update c41:c71 vmovapd(mem(rcx,32), ymm0) // load c41:c71 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm12, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx,32)) // store c41:c71 add(rdi, rcx) // c += cs_c; // update c02:c32 vmovapd(mem(rcx), ymm0) // load c02:c32 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm11, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx)) // store c02:c32 // update c42:c72 vmovapd(mem(rcx,32), ymm0) // load c42:c72 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm10, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx,32)) // store c42:c72 add(rdi, rcx) // c += cs_c; // update c03:c33 vmovapd(mem(rcx), ymm0) // load c03:c33 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm9, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx)) // store c03:c33 // update c43:c73 vmovapd(mem(rcx,32), ymm0) // load c43:c73 into ymm0 Z_ALPHA(0, 2) // scale ymm0 by beta vaddpd(ymm8, ymm0, ymm0) // add the gemm result to ymm0 vmovapd(ymm0, mem(rcx,32)) // store c43:c73 add(rdi, rcx) // c += cs_c; jmp(.ZDONE) // jump to end. label(.ZBETAZERO) vmovapd(ymm15, mem(rcx)) // store c00:c30 vmovapd(ymm14, mem(rcx,32)) // store c40:c70 add(rdi, rcx) // c += cs_c; vmovapd(ymm13, mem(rcx)) // store c01:c31 vmovapd(ymm12, mem(rcx,32)) // store c41:c71 add(rdi, rcx) // c += cs_c; vmovapd(ymm11, mem(rcx)) // store c02:c32 vmovapd(ymm10, mem(rcx,32)) // store c42:c72 add(rdi, rcx) // c += cs_c; vmovapd(ymm9, mem(rcx)) // store c03:c33 vmovapd(ymm8, mem(rcx,32)) // store c43:c73 //add(rdi, rcx) // c += cs_c; label(.ZDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), // 0 [k_left] "m" (k_left), // 1 [a] "m" (a), // 2 [b] "m" (b), // 3 [alpha] "m" (alpha), // 4 [beta] "m" (beta), // 5 [c] "m" (c), // 6 [rs_c] "m" (rs_c), // 7 [cs_c] "m" (cs_c)/*, // 8 [b_next] "m" (b_next), // 9 [a_next] "m" (a_next)*/ // 10 : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15", "memory" ) GEMM_UKR_FLUSH_CT( z ); }