/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Copyright (C) 2019, Advanced Micro Devices, Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #define BLIS_ASM_SYNTAX_ATT #include "bli_x86_asm_macros.h" /* rrr: -------- ------ -------- -------- ------ -------- -------- += ------ ... -------- -------- ------ -------- -------- ------ : -------- ------ : rcr: -------- | | | | -------- -------- | | | | -------- -------- += | | | | ... -------- -------- | | | | -------- -------- | | | | : -------- | | | | : Assumptions: - B is row-stored; - A is row- or column-stored; - m0 and n0 are at most MR and NR, respectively. Therefore, this (r)ow-preferential kernel is well-suited for contiguous (v)ector loads on B and single-element broadcasts from A. NOTE: These kernels explicitly support column-oriented IO, implemented via an in-register transpose. And thus they also support the crr and ccr cases, though only crr is ever utilized (because ccr is handled by transposing the operation and executing rcr, which does not incur the cost of the in-register transpose). crr: | | | | | | | | ------ -------- | | | | | | | | ------ -------- | | | | | | | | += ------ ... -------- | | | | | | | | ------ -------- | | | | | | | | ------ : | | | | | | | | ------ : */ // Prototype reference microkernels. GEMMSUP_KER_PROT( double, d, gemmsup_r_haswell_ref ) void bli_dgemmsup_rv_haswell_asm_6x8m ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { uint64_t n_left = n0 % 8; // First check whether this is a edge case in the n dimension. If so, // dispatch other 6x?m kernels, as needed. if ( n_left ) { double* cij = ( double* )c; const double* bj = ( double* )b; const double* ai = ( double* )a; if ( 6 <= n_left ) { const dim_t nr_cur = 6; bli_dgemmsup_rv_haswell_asm_6x6m ( conja, conjb, m0, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); cij += nr_cur*cs_c0; bj += nr_cur*cs_b0; n_left -= nr_cur; } if ( 4 <= n_left ) { const dim_t nr_cur = 4; bli_dgemmsup_rv_haswell_asm_6x4m ( conja, conjb, m0, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); cij += nr_cur*cs_c0; bj += nr_cur*cs_b0; n_left -= nr_cur; } if ( 2 <= n_left ) { const dim_t nr_cur = 2; bli_dgemmsup_rv_haswell_asm_6x2m ( conja, conjb, m0, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); cij += nr_cur*cs_c0; bj += nr_cur*cs_b0; n_left -= nr_cur; } if ( 1 == n_left ) { #if 0 const dim_t nr_cur = 1; bli_dgemmsup_r_haswell_ref ( conja, conjb, m0, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); #else dim_t ps_a0 = bli_auxinfo_ps_a( data ); if ( ps_a0 == 6 * rs_a0 ) { // Since A is not packed, we can use one gemv. bli_dgemv_ex ( BLIS_NO_TRANSPOSE, conjb, m0, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, beta, cij, rs_c0, cntx, NULL ); } else { const dim_t mr = 6; // Since A is packed into row panels, we must use a loop over // gemv. dim_t m_iter = ( m0 + mr - 1 ) / mr; dim_t m_left = m0 % mr; const double* ai_ii = ai; double* cij_ii = cij; for ( dim_t ii = 0; ii < m_iter; ii += 1 ) { dim_t mr_cur = ( bli_is_not_edge_f( ii, m_iter, m_left ) ? mr : m_left ); bli_dgemv_ex ( BLIS_NO_TRANSPOSE, conjb, mr_cur, k0, alpha, ai_ii, rs_a0, cs_a0, bj, rs_b0, beta, cij_ii, rs_c0, cntx, NULL ); cij_ii += mr*rs_c0; ai_ii += ps_a0; } } #endif } return; } //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t m_iter = m0 / 6; uint64_t m_left = m0 % 6; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // Query the panel stride of A and convert it to units of bytes. uint64_t ps_a = bli_auxinfo_ps_a( data ); uint64_t ps_a8 = ps_a * sizeof( double ); if ( m_iter == 0 ) goto consider_edge_cases; // ------------------------------------------------------------------------- begin_asm() //vzeroall() // zero all xmm/ymm registers. mov(var(a), r14) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a //mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), r12) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) // During preamble and loops: // r12 = rcx = c // r14 = rax = a // read rbx from var(b) near beginning of loop // r11 = m dim index ii mov(var(m_iter), r11) // ii = m_iter; label(.DLOOP6X8I) // LOOP OVER ii = [ m_iter ... 1 0 ] #if 0 vzeroall() // zero all xmm/ymm registers. #else // skylake can execute 3 vxorpd ipc with // a latency of 1 cycle, while vzeroall // has a latency of 12 cycles. vxorpd(ymm4, ymm4, ymm4) vxorpd(ymm5, ymm5, ymm5) vxorpd(ymm6, ymm6, ymm6) vxorpd(ymm7, ymm7, ymm7) vxorpd(ymm8, ymm8, ymm8) vxorpd(ymm9, ymm9, ymm9) vxorpd(ymm10, ymm10, ymm10) vxorpd(ymm11, ymm11, ymm11) vxorpd(ymm12, ymm12, ymm12) vxorpd(ymm13, ymm13, ymm13) vxorpd(ymm14, ymm14, ymm14) vxorpd(ymm15, ymm15, ymm15) #endif mov(var(b), rbx) // load address of b. //mov(r12, rcx) // reset rcx to current utile of c. mov(r14, rax) // reset rax to current upanel of a. cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c lea(mem(r12, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(r12, 7*8)) // prefetch c + 0*rs_c prefetch(0, mem(r12, rdi, 1, 7*8)) // prefetch c + 1*rs_c prefetch(0, mem(r12, rdi, 2, 7*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 7*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 7*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 7*8)) // prefetch c + 5*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(r12, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(r12, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(r12, rsi, 1, 5*8)) // prefetch c + 1*cs_c prefetch(0, mem(r12, rsi, 2, 5*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 5*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 5*8)) // prefetch c + 5*cs_c lea(mem(rdx, rsi, 2), rdx) // rdx = c + 5*cs_c; prefetch(0, mem(rdx, rsi, 1, 5*8)) // prefetch c + 6*cs_c prefetch(0, mem(rdx, rsi, 2, 5*8)) // prefetch c + 7*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 mov(var(ps_a8), rdx) // load ps_a8 lea(mem(rax, rdx, 1), rdx) // rdx = a + ps_a8 lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; // use rcx, rdx for prefetching lines // from next upanel of a. #else lea(mem(rax, r8, 4), rdx) // use rdx for prefetching lines lea(mem(rdx, r8, 2), rdx) // from next upanel of a. lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 1, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) // ---------------------------------- iteration 2 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 2, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) // ---------------------------------- iteration 3 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, rcx, 1, 5*8)) lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 1 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(r12, rcx) // reset rcx to current utile of c. mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(ymm0, ymm5, ymm5) vmulpd(ymm0, ymm6, ymm6) vmulpd(ymm0, ymm7, ymm7) vmulpd(ymm0, ymm8, ymm8) vmulpd(ymm0, ymm9, ymm9) vmulpd(ymm0, ymm10, ymm10) vmulpd(ymm0, ymm11, ymm11) vmulpd(ymm0, ymm12, ymm12) vmulpd(ymm0, ymm13, ymm13) vmulpd(ymm0, ymm14, ymm14) vmulpd(ymm0, ymm15, ymm15) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), ymm3, ymm5) vmovupd(ymm5, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), ymm3, ymm7) vmovupd(ymm7, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm8) vmovupd(ymm8, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), ymm3, ymm9) vmovupd(ymm9, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm10) vmovupd(ymm10, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), ymm3, ymm11) vmovupd(ymm11, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm12) vmovupd(ymm12, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), ymm3, ymm13) vmovupd(ymm13, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm14) vmovupd(ymm14, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), ymm3, ymm15) vmovupd(ymm15, mem(rcx, 1*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm4) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm6) vfmadd231pd(mem(rcx, rsi, 2), ymm3, ymm8) vfmadd231pd(mem(rcx, rax, 1), ymm3, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vfmadd231pd(mem(rdx ), xmm3, xmm0) vfmadd231pd(mem(rdx, rsi, 1), xmm3, xmm1) vfmadd231pd(mem(rdx, rsi, 2), xmm3, xmm2) vfmadd231pd(mem(rdx, rax, 1), xmm3, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // begin I/O on columns 4-7 vunpcklpd(ymm7, ymm5, ymm0) vunpckhpd(ymm7, ymm5, ymm1) vunpcklpd(ymm11, ymm9, ymm2) vunpckhpd(ymm11, ymm9, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm5) vinsertf128(imm(0x1), xmm3, ymm1, ymm7) vperm2f128(imm(0x31), ymm2, ymm0, ymm9) vperm2f128(imm(0x31), ymm3, ymm1, ymm11) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm5) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm7) vfmadd231pd(mem(rcx, rsi, 2), ymm3, ymm9) vfmadd231pd(mem(rcx, rax, 1), ymm3, ymm11) vmovupd(ymm5, mem(rcx )) vmovupd(ymm7, mem(rcx, rsi, 1)) vmovupd(ymm9, mem(rcx, rsi, 2)) vmovupd(ymm11, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm15, ymm13, ymm0) vunpckhpd(ymm15, ymm13, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vfmadd231pd(mem(rdx ), xmm3, xmm0) vfmadd231pd(mem(rdx, rsi, 1), xmm3, xmm1) vfmadd231pd(mem(rdx, rsi, 2), xmm3, xmm2) vfmadd231pd(mem(rdx, rax, 1), xmm3, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) vmovupd(ymm5, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) vmovupd(ymm7, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm8, mem(rcx, 0*32)) vmovupd(ymm9, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm10, mem(rcx, 0*32)) vmovupd(ymm11, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm12, mem(rcx, 0*32)) vmovupd(ymm13, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm14, mem(rcx, 0*32)) vmovupd(ymm15, mem(rcx, 1*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // begin I/O on columns 4-7 vunpcklpd(ymm7, ymm5, ymm0) vunpckhpd(ymm7, ymm5, ymm1) vunpcklpd(ymm11, ymm9, ymm2) vunpckhpd(ymm11, ymm9, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm5) vinsertf128(imm(0x1), xmm3, ymm1, ymm7) vperm2f128(imm(0x31), ymm2, ymm0, ymm9) vperm2f128(imm(0x31), ymm3, ymm1, ymm11) vmovupd(ymm5, mem(rcx )) vmovupd(ymm7, mem(rcx, rsi, 1)) vmovupd(ymm9, mem(rcx, rsi, 2)) vmovupd(ymm11, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm15, ymm13, ymm0) vunpckhpd(ymm15, ymm13, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) label(.DDONE) lea(mem(r12, rdi, 4), r12) // lea(mem(r12, rdi, 2), r12) // c_ii = r12 += 6*rs_c //lea(mem(r14, r8, 4), r14) // //lea(mem(r14, r8, 2), r14) // a_ii = r14 += 6*rs_a mov(var(ps_a8), rax) // load ps_a8 lea(mem(r14, rax, 1), r14) // a_ii = r14 += ps_a8 dec(r11) // ii -= 1; jne(.DLOOP6X8I) // iterate again if ii != 0. label(.DRETURN) end_asm( : // output operands (none) : // input operands [m_iter] "m" (m_iter), [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [ps_a8] "m" (ps_a8), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) consider_edge_cases: // Handle edge cases in the m dimension, if they exist. if ( m_left ) { const dim_t nr_cur = 8; const dim_t i_edge = m0 - ( dim_t )m_left; double* cij = ( double* )c + i_edge*rs_c; //const double* ai = ( double* )a + i_edge*rs_a; //const double* ai = ( double* )a + ( i_edge / 6 ) * ps_a; const double* ai = ( double* )a + m_iter * ps_a; const double* bj = ( double* )b; #if 0 // We add special handling for slightly inflated MR blocksizes // at edge cases, up to a maximum of 9. if ( 6 < m_left ) { gemmsup_ker_ft ker_fp1 = NULL; gemmsup_ker_ft ker_fp2 = NULL; dim_t mr1, mr2; if ( m_left == 7 ) { mr1 = 4; mr2 = 3; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x8; ker_fp2 = bli_dgemmsup_rv_haswell_asm_3x8; } else if ( m_left == 8 ) { mr1 = 4; mr2 = 4; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x8; ker_fp2 = bli_dgemmsup_rv_haswell_asm_4x8; } else // if ( m_left == 9 ) { mr1 = 4; mr2 = 5; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x8; ker_fp2 = bli_dgemmsup_rv_haswell_asm_5x8; } ker_fp1 ( conja, conjb, mr1, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); cij += mr1*rs_c0; ai += mr1*rs_a0; ker_fp2 ( conja, conjb, mr2, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } #endif gemmsup_ker_ft ker_fps[6] = { NULL, bli_dgemmsup_rv_haswell_asm_1x8, bli_dgemmsup_rv_haswell_asm_2x8, bli_dgemmsup_rv_haswell_asm_3x8, bli_dgemmsup_rv_haswell_asm_4x8, bli_dgemmsup_rv_haswell_asm_5x8 }; gemmsup_ker_ft ker_fp = ker_fps[ m_left ]; ker_fp ( conja, conjb, m_left, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } } void bli_dgemmsup_rv_haswell_asm_6x6m ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t m_iter = m0 / 6; uint64_t m_left = m0 % 6; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // Query the panel stride of A and convert it to units of bytes. uint64_t ps_a = bli_auxinfo_ps_a( data ); uint64_t ps_a8 = ps_a * sizeof( double ); if ( m_iter == 0 ) goto consider_edge_cases; // ------------------------------------------------------------------------- begin_asm() //vzeroall() // zero all xmm/ymm registers. mov(var(a), r14) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a //mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), r12) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) // During preamble and loops: // r12 = rcx = c // r14 = rax = a // read rbx from var(b) near beginning of loop // r11 = m dim index ii mov(var(m_iter), r11) // ii = m_iter; label(.DLOOP6X8I) // LOOP OVER ii = [ m_iter ... 1 0 ] #if 0 vzeroall() // zero all xmm/ymm registers. #else // skylake can execute 3 vxorpd ipc with // a latency of 1 cycle, while vzeroall // has a latency of 12 cycles. vxorpd(ymm1, ymm1, ymm1) // zero ymm1 since we only use the lower vxorpd(ymm4, ymm4, ymm4) // half (xmm1), and nans/infs may slow us vxorpd(ymm5, ymm5, ymm5) // down. vxorpd(ymm6, ymm6, ymm6) vxorpd(ymm7, ymm7, ymm7) vxorpd(ymm8, ymm8, ymm8) vxorpd(ymm9, ymm9, ymm9) vxorpd(ymm10, ymm10, ymm10) vxorpd(ymm11, ymm11, ymm11) vxorpd(ymm12, ymm12, ymm12) vxorpd(ymm13, ymm13, ymm13) vxorpd(ymm14, ymm14, ymm14) vxorpd(ymm15, ymm15, ymm15) #endif mov(var(b), rbx) // load address of b. //mov(r12, rcx) // reset rcx to current utile of c. mov(r14, rax) // reset rax to current upanel of a. cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c lea(mem(r12, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(r12, 5*8)) // prefetch c + 0*rs_c prefetch(0, mem(r12, rdi, 1, 5*8)) // prefetch c + 1*rs_c prefetch(0, mem(r12, rdi, 2, 5*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 5*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 5*8)) // prefetch c + 5*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(r12, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(r12, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(r12, rsi, 1, 5*8)) // prefetch c + 1*cs_c prefetch(0, mem(r12, rsi, 2, 5*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 5*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 5*8)) // prefetch c + 5*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 mov(var(ps_a8), rdx) // load ps_a8 lea(mem(rax, rdx, 1), rdx) // rdx = a + ps_a8 lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; // use rcx, rdx for prefetching lines // from next upanel of a. #else lea(mem(rax, r8, 4), rdx) // use rdx for prefetching lines lea(mem(rdx, r8, 2), rdx) // from next upanel of a. lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), xmm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 1, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), xmm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) // ---------------------------------- iteration 2 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 2, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), xmm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) // ---------------------------------- iteration 3 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, rcx, 1, 5*8)) lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), xmm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 1 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) vmovupd(mem(rbx, 1*32), xmm1) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm1, ymm2, ymm5) vfmadd231pd(ymm0, ymm3, ymm6) vfmadd231pd(ymm1, ymm3, ymm7) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm1, ymm2, ymm9) vfmadd231pd(ymm0, ymm3, ymm10) vfmadd231pd(ymm1, ymm3, ymm11) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm1, ymm2, ymm13) vfmadd231pd(ymm0, ymm3, ymm14) vfmadd231pd(ymm1, ymm3, ymm15) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(r12, rcx) // reset rcx to current utile of c. mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(xmm0, xmm5, xmm5) vmulpd(ymm0, ymm6, ymm6) vmulpd(xmm0, xmm7, xmm7) vmulpd(ymm0, ymm8, ymm8) vmulpd(xmm0, xmm9, xmm9) vmulpd(ymm0, ymm10, ymm10) vmulpd(xmm0, xmm11, xmm11) vmulpd(ymm0, ymm12, ymm12) vmulpd(xmm0, xmm13, xmm13) vmulpd(ymm0, ymm14, ymm14) vmulpd(xmm0, xmm15, xmm15) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), xmm3, xmm5) vmovupd(xmm5, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), xmm3, xmm7) vmovupd(xmm7, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm8) vmovupd(ymm8, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), xmm3, xmm9) vmovupd(xmm9, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm10) vmovupd(ymm10, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), xmm3, xmm11) vmovupd(xmm11, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm12) vmovupd(ymm12, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), xmm3, xmm13) vmovupd(xmm13, mem(rcx, 1*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm14) vmovupd(ymm14, mem(rcx, 0*32)) vfmadd231pd(mem(rcx, 1*32), xmm3, xmm15) vmovupd(xmm15, mem(rcx, 1*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm4) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm6) vfmadd231pd(mem(rcx, rsi, 2), ymm3, ymm8) vfmadd231pd(mem(rcx, rax, 1), ymm3, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vfmadd231pd(mem(rdx ), xmm3, xmm0) vfmadd231pd(mem(rdx, rsi, 1), xmm3, xmm1) vfmadd231pd(mem(rdx, rsi, 2), xmm3, xmm2) vfmadd231pd(mem(rdx, rax, 1), xmm3, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // begin I/O on columns 4-5 vunpcklpd(ymm7, ymm5, ymm0) vunpckhpd(ymm7, ymm5, ymm1) vunpcklpd(ymm11, ymm9, ymm2) vunpckhpd(ymm11, ymm9, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm5) vinsertf128(imm(0x1), xmm3, ymm1, ymm7) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm5) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm7) vmovupd(ymm5, mem(rcx )) vmovupd(ymm7, mem(rcx, rsi, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm15, ymm13, ymm0) vunpckhpd(ymm15, ymm13, ymm1) vfmadd231pd(mem(rdx ), xmm3, xmm0) vfmadd231pd(mem(rdx, rsi, 1), xmm3, xmm1) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) //lea(mem(rdx, rsi, 4), rdx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) vmovupd(xmm5, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) vmovupd(xmm7, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm8, mem(rcx, 0*32)) vmovupd(xmm9, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm10, mem(rcx, 0*32)) vmovupd(xmm11, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm12, mem(rcx, 0*32)) vmovupd(xmm13, mem(rcx, 1*32)) add(rdi, rcx) vmovupd(ymm14, mem(rcx, 0*32)) vmovupd(xmm15, mem(rcx, 1*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // begin I/O on columns 4-5 vunpcklpd(ymm7, ymm5, ymm0) vunpckhpd(ymm7, ymm5, ymm1) vunpcklpd(ymm11, ymm9, ymm2) vunpckhpd(ymm11, ymm9, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm5) vinsertf128(imm(0x1), xmm3, ymm1, ymm7) vmovupd(ymm5, mem(rcx )) vmovupd(ymm7, mem(rcx, rsi, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm15, ymm13, ymm0) vunpckhpd(ymm15, ymm13, ymm1) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) //lea(mem(rdx, rsi, 4), rdx) label(.DDONE) lea(mem(r12, rdi, 4), r12) // lea(mem(r12, rdi, 2), r12) // c_ii = r12 += 6*rs_c //lea(mem(r14, r8, 4), r14) // //lea(mem(r14, r8, 2), r14) // a_ii = r14 += 6*rs_a mov(var(ps_a8), rax) // load ps_a8 lea(mem(r14, rax, 1), r14) // a_ii = r14 += ps_a8 dec(r11) // ii -= 1; jne(.DLOOP6X8I) // iterate again if ii != 0. label(.DRETURN) end_asm( : // output operands (none) : // input operands [m_iter] "m" (m_iter), [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [ps_a8] "m" (ps_a8), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) consider_edge_cases: // Handle edge cases in the m dimension, if they exist. if ( m_left ) { const dim_t nr_cur = 6; const dim_t i_edge = m0 - ( dim_t )m_left; double* cij = ( double* )c + i_edge*rs_c; //const double* ai = ( double* )a + i_edge*rs_a; //const double* ai = ( double* )a + ( i_edge / 6 ) * ps_a; const double* ai = ( double* )a + m_iter * ps_a; const double* bj = ( double* )b; #if 0 // We add special handling for slightly inflated MR blocksizes // at edge cases, up to a maximum of 9. if ( 6 < m_left ) { gemmsup_ker_ft ker_fp1 = NULL; gemmsup_ker_ft ker_fp2 = NULL; dim_t mr1, mr2; if ( m_left == 7 ) { mr1 = 4; mr2 = 3; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x6; ker_fp2 = bli_dgemmsup_rv_haswell_asm_3x6; } else if ( m_left == 8 ) { mr1 = 4; mr2 = 4; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x6; ker_fp2 = bli_dgemmsup_rv_haswell_asm_4x6; } else // if ( m_left == 9 ) { mr1 = 4; mr2 = 5; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x6; ker_fp2 = bli_dgemmsup_rv_haswell_asm_5x6; } ker_fp1 ( conja, conjb, mr1, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); cij += mr1*rs_c0; ai += mr1*rs_a0; ker_fp2 ( conja, conjb, mr2, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } #endif gemmsup_ker_ft ker_fps[6] = { NULL, bli_dgemmsup_rv_haswell_asm_1x6, bli_dgemmsup_rv_haswell_asm_2x6, bli_dgemmsup_rv_haswell_asm_3x6, bli_dgemmsup_rv_haswell_asm_4x6, bli_dgemmsup_rv_haswell_asm_5x6 }; gemmsup_ker_ft ker_fp = ker_fps[ m_left ]; ker_fp ( conja, conjb, m_left, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } } void bli_dgemmsup_rv_haswell_asm_6x4m ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t m_iter = m0 / 6; uint64_t m_left = m0 % 6; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // Query the panel stride of A and convert it to units of bytes. uint64_t ps_a = bli_auxinfo_ps_a( data ); uint64_t ps_a8 = ps_a * sizeof( double ); if ( m_iter == 0 ) goto consider_edge_cases; // ------------------------------------------------------------------------- begin_asm() //vzeroall() // zero all xmm/ymm registers. mov(var(a), r14) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a //mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), r12) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) // During preamble and loops: // r12 = rcx = c // r14 = rax = a // read rbx from var(b) near beginning of loop // r11 = m dim index ii mov(var(m_iter), r11) // ii = m_iter; label(.DLOOP6X4I) // LOOP OVER ii = [ m_iter ... 1 0 ] #if 0 vzeroall() // zero all xmm/ymm registers. #else // skylake can execute 3 vxorpd ipc with // a latency of 1 cycle, while vzeroall // has a latency of 12 cycles. vxorpd(ymm4, ymm4, ymm4) vxorpd(ymm6, ymm6, ymm6) vxorpd(ymm8, ymm8, ymm8) vxorpd(ymm10, ymm10, ymm10) vxorpd(ymm12, ymm12, ymm12) vxorpd(ymm14, ymm14, ymm14) #endif mov(var(b), rbx) // load address of b. //mov(r12, rcx) // reset rcx to current utile of c. mov(r14, rax) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c lea(mem(r12, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(r12, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(r12, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(r12, rdi, 2, 3*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 3*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 3*8)) // prefetch c + 5*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(r12, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(r12, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(r12, rsi, 1, 5*8)) // prefetch c + 1*cs_c prefetch(0, mem(r12, rsi, 2, 5*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 mov(var(ps_a8), rdx) // load ps_a8 lea(mem(rax, rdx, 1), rdx) // rdx = a + ps_a8 lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; // use rcx, rdx for prefetching lines // from next upanel of a. #else lea(mem(rax, r8, 4), rdx) // use rdx for prefetching lines lea(mem(rdx, r8, 2), rdx) // from next upanel of a. lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 1, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) // ---------------------------------- iteration 2 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 2, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) // ---------------------------------- iteration 3 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, rcx, 1, 5*8)) lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 1 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(r12, rcx) // reset rcx to current utile of c. mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(ymm0, ymm6, ymm6) vmulpd(ymm0, ymm8, ymm8) vmulpd(ymm0, ymm10, ymm10) vmulpd(ymm0, ymm12, ymm12) vmulpd(ymm0, ymm14, ymm14) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm8) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm10) vmovupd(ymm10, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm12) vmovupd(ymm12, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm14) vmovupd(ymm14, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm4) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm6) vfmadd231pd(mem(rcx, rsi, 2), ymm3, ymm8) vfmadd231pd(mem(rcx, rax, 1), ymm3, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vfmadd231pd(mem(rdx ), xmm3, xmm0) vfmadd231pd(mem(rdx, rsi, 1), xmm3, xmm1) vfmadd231pd(mem(rdx, rsi, 2), xmm3, xmm2) vfmadd231pd(mem(rdx, rax, 1), xmm3, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm10, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm12, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm14, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) label(.DDONE) lea(mem(r12, rdi, 4), r12) // lea(mem(r12, rdi, 2), r12) // c_ii = r12 += 6*rs_c //lea(mem(r14, r8, 4), r14) // //lea(mem(r14, r8, 2), r14) // a_ii = r14 += 6*rs_a mov(var(ps_a8), rax) // load ps_a8 lea(mem(r14, rax, 1), r14) // a_ii = r14 += ps_a8 dec(r11) // ii -= 1; jne(.DLOOP6X4I) // iterate again if ii != 0. label(.DRETURN) end_asm( : // output operands (none) : // input operands [m_iter] "m" (m_iter), [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [ps_a8] "m" (ps_a8), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) consider_edge_cases: // Handle edge cases in the m dimension, if they exist. if ( m_left ) { const dim_t nr_cur = 4; const dim_t i_edge = m0 - ( dim_t )m_left; double* cij = ( double* )c + i_edge*rs_c; //const double* ai = ( double* )a + i_edge*rs_a; //const double* ai = ( double* )a + ( i_edge / 6 ) * ps_a; const double* ai = ( double* )a + m_iter * ps_a; const double* bj = ( double* )b; #if 0 // We add special handling for slightly inflated MR blocksizes // at edge cases, up to a maximum of 9. if ( 6 < m_left ) { gemmsup_ker_ft ker_fp1 = NULL; gemmsup_ker_ft ker_fp2 = NULL; dim_t mr1, mr2; if ( m_left == 7 ) { mr1 = 4; mr2 = 3; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x4; ker_fp2 = bli_dgemmsup_rv_haswell_asm_3x4; } else if ( m_left == 8 ) { mr1 = 4; mr2 = 4; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x4; ker_fp2 = bli_dgemmsup_rv_haswell_asm_4x4; } else // if ( m_left == 9 ) { mr1 = 4; mr2 = 5; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x4; ker_fp2 = bli_dgemmsup_rv_haswell_asm_5x4; } ker_fp1 ( conja, conjb, mr1, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); cij += mr1*rs_c0; ai += mr1*rs_a0; ker_fp2 ( conja, conjb, mr2, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } #endif gemmsup_ker_ft ker_fps[6] = { NULL, bli_dgemmsup_rv_haswell_asm_1x4, bli_dgemmsup_rv_haswell_asm_2x4, bli_dgemmsup_rv_haswell_asm_3x4, bli_dgemmsup_rv_haswell_asm_4x4, bli_dgemmsup_rv_haswell_asm_5x4 }; gemmsup_ker_ft ker_fp = ker_fps[ m_left ]; ker_fp ( conja, conjb, m_left, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } } void bli_dgemmsup_rv_haswell_asm_6x2m ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t m_iter = m0 / 6; uint64_t m_left = m0 % 6; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // Query the panel stride of A and convert it to units of bytes. uint64_t ps_a = bli_auxinfo_ps_a( data ); uint64_t ps_a8 = ps_a * sizeof( double ); if ( m_iter == 0 ) goto consider_edge_cases; // ------------------------------------------------------------------------- begin_asm() //vzeroall() // zero all xmm/ymm registers. mov(var(a), r14) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a //mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), r12) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) // During preamble and loops: // r12 = rcx = c // r14 = rax = a // read rbx from var(b) near beginning of loop // r11 = m dim index ii mov(var(m_iter), r11) // ii = m_iter; label(.DLOOP6X2I) // LOOP OVER ii = [ m_iter ... 1 0 ] #if 0 vzeroall() // zero all xmm/ymm registers. #else // skylake can execute 3 vxorpd ipc with // a latency of 1 cycle, while vzeroall // has a latency of 12 cycles. vxorpd(xmm4, xmm4, xmm4) vxorpd(xmm6, xmm6, xmm6) vxorpd(xmm8, xmm8, xmm8) vxorpd(xmm10, xmm10, xmm10) vxorpd(xmm12, xmm12, xmm12) vxorpd(xmm14, xmm14, xmm14) #endif mov(var(b), rbx) // load address of b. //mov(r12, rcx) // reset rcx to current utile of c. mov(r14, rax) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c lea(mem(r12, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(r12, 1*8)) // prefetch c + 0*rs_c prefetch(0, mem(r12, rdi, 1, 1*8)) // prefetch c + 1*rs_c prefetch(0, mem(r12, rdi, 2, 1*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 1*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 1*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 1*8)) // prefetch c + 5*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) prefetch(0, mem(r12, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(r12, rsi, 1, 5*8)) // prefetch c + 1*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 mov(var(ps_a8), rdx) // load ps_a8 lea(mem(rax, rdx, 1), rdx) // rdx = a + ps_a8 lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; // use rcx, rdx for prefetching lines // from next upanel of a. #else lea(mem(rax, r8, 4), rdx) // use rdx for prefetching lines lea(mem(rdx, r8, 2), rdx) // from next upanel of a. lea(mem(r9, r9, 2), rcx) // rcx = 3*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, 5*8)) #endif vmovupd(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm4) vfmadd231pd(xmm0, xmm3, xmm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm8) vfmadd231pd(xmm0, xmm3, xmm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(xmm0, xmm2, xmm12) vfmadd231pd(xmm0, xmm3, xmm14) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 1, 5*8)) #endif vmovupd(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm4) vfmadd231pd(xmm0, xmm3, xmm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm8) vfmadd231pd(xmm0, xmm3, xmm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(xmm0, xmm2, xmm12) vfmadd231pd(xmm0, xmm3, xmm14) // ---------------------------------- iteration 2 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, r9, 2, 5*8)) #endif vmovupd(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm4) vfmadd231pd(xmm0, xmm3, xmm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm8) vfmadd231pd(xmm0, xmm3, xmm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(xmm0, xmm2, xmm12) vfmadd231pd(xmm0, xmm3, xmm14) // ---------------------------------- iteration 3 #if 0 prefetch(0, mem(rdx, 5*8)) #else prefetch(0, mem(rdx, rcx, 1, 5*8)) lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm4) vfmadd231pd(xmm0, xmm3, xmm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm8) vfmadd231pd(xmm0, xmm3, xmm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(xmm0, xmm2, xmm12) vfmadd231pd(xmm0, xmm3, xmm14) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 1 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm4) vfmadd231pd(xmm0, xmm3, xmm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(xmm0, xmm2, xmm8) vfmadd231pd(xmm0, xmm3, xmm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(xmm0, xmm2, xmm12) vfmadd231pd(xmm0, xmm3, xmm14) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(r12, rcx) // reset rcx to current utile of c. mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(xmm0, xmm4, xmm4) // scale by alpha vmulpd(xmm0, xmm6, xmm6) vmulpd(xmm0, xmm8, xmm8) vmulpd(xmm0, xmm10, xmm10) vmulpd(xmm0, xmm12, xmm12) vmulpd(xmm0, xmm14, xmm14) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; //lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), xmm3, xmm4) vmovupd(xmm4, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), xmm3, xmm6) vmovupd(xmm6, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), xmm3, xmm8) vmovupd(xmm8, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), xmm3, xmm10) vmovupd(xmm10, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), xmm3, xmm12) vmovupd(xmm12, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), xmm3, xmm14) vmovupd(xmm14, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(xmm6, xmm4, xmm0) vunpckhpd(xmm6, xmm4, xmm1) vunpcklpd(xmm10, xmm8, xmm2) vunpckhpd(xmm10, xmm8, xmm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm4) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm6) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(xmm14, xmm12, xmm0) vunpckhpd(xmm14, xmm12, xmm1) vfmadd231pd(mem(rdx ), xmm3, xmm0) vfmadd231pd(mem(rdx, rsi, 1), xmm3, xmm1) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) //lea(mem(rdx, rsi, 4), rdx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(xmm4, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(xmm6, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(xmm8, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(xmm10, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(xmm12, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(xmm14, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(xmm6, xmm4, xmm0) vunpckhpd(xmm6, xmm4, xmm1) vunpcklpd(xmm10, xmm8, xmm2) vunpckhpd(xmm10, xmm8, xmm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(xmm14, xmm12, xmm0) vunpckhpd(xmm14, xmm12, xmm1) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) //lea(mem(rdx, rsi, 4), rdx) label(.DDONE) lea(mem(r12, rdi, 4), r12) // lea(mem(r12, rdi, 2), r12) // c_ii = r12 += 6*rs_c //lea(mem(r14, r8, 4), r14) // //lea(mem(r14, r8, 2), r14) // a_ii = r14 += 6*rs_a mov(var(ps_a8), rax) // load ps_a8 lea(mem(r14, rax, 1), r14) // a_ii = r14 += ps_a8 dec(r11) // ii -= 1; jne(.DLOOP6X2I) // iterate again if ii != 0. label(.DRETURN) end_asm( : // output operands (none) : // input operands [m_iter] "m" (m_iter), [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [ps_a8] "m" (ps_a8), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) consider_edge_cases: // Handle edge cases in the m dimension, if they exist. if ( m_left ) { const dim_t nr_cur = 2; const dim_t i_edge = m0 - ( dim_t )m_left; double* cij = ( double* )c + i_edge*rs_c; //const double* ai = ( double* )a + i_edge*rs_a; //const double* ai = ( double* )a + ( i_edge / 6 ) * ps_a; const double* ai = ( double* )a + m_iter * ps_a; const double* bj = ( double* )b; #if 0 // We add special handling for slightly inflated MR blocksizes // at edge cases, up to a maximum of 9. if ( 6 < m_left ) { gemmsup_ker_ft ker_fp1 = NULL; gemmsup_ker_ft ker_fp2 = NULL; dim_t mr1, mr2; if ( m_left == 7 ) { mr1 = 4; mr2 = 3; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x2; ker_fp2 = bli_dgemmsup_rv_haswell_asm_3x2; } else if ( m_left == 8 ) { mr1 = 4; mr2 = 4; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x2; ker_fp2 = bli_dgemmsup_rv_haswell_asm_4x2; } else // if ( m_left == 9 ) { mr1 = 4; mr2 = 5; ker_fp1 = bli_dgemmsup_rv_haswell_asm_4x2; ker_fp2 = bli_dgemmsup_rv_haswell_asm_5x2; } ker_fp1 ( conja, conjb, mr1, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); cij += mr1*rs_c0; ai += mr1*rs_a0; ker_fp2 ( conja, conjb, mr2, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } #endif gemmsup_ker_ft ker_fps[6] = { NULL, bli_dgemmsup_rv_haswell_asm_1x2, bli_dgemmsup_rv_haswell_asm_2x2, bli_dgemmsup_rv_haswell_asm_3x2, bli_dgemmsup_rv_haswell_asm_4x2, bli_dgemmsup_rv_haswell_asm_5x2 }; gemmsup_ker_ft ker_fp = ker_fps[ m_left ]; ker_fp ( conja, conjb, m_left, nr_cur, k0, alpha, ai, rs_a0, cs_a0, bj, rs_b0, cs_b0, beta, cij, rs_c0, cs_c0, data, cntx ); return; } }