/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Copyright (C) 2019, Advanced Micro Devices, Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #define BLIS_ASM_SYNTAX_ATT #include "bli_x86_asm_macros.h" /* rrr: -------- ------ -------- -------- ------ -------- -------- += ------ ... -------- -------- ------ -------- -------- ------ : -------- ------ : rcr: -------- | | | | -------- -------- | | | | -------- -------- += | | | | ... -------- -------- | | | | -------- -------- | | | | : -------- | | | | : Assumptions: - B is row-stored; - A is row- or column-stored; - m0 and n0 are at most MR and NR, respectively. Therefore, this (r)ow-preferential kernel is well-suited for contiguous (v)ector loads on B and single-element broadcasts from A. NOTE: These kernels explicitly support column-oriented IO, implemented via an in-register transpose. And thus they also support the crr and ccr cases, though only crr is ever utilized (because ccr is handled by transposing the operation and executing rcr, which does not incur the cost of the in-register transpose). crr: | | | | | | | | ------ -------- | | | | | | | | ------ -------- | | | | | | | | += ------ ... -------- | | | | | | | | ------ -------- | | | | | | | | ------ : | | | | | | | | ------ : */ // Prototype reference microkernels. GEMMSUP_KER_PROT( double, d, gemmsup_r_haswell_ref ) void bli_dgemmsup_rv_haswell_asm_6x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vzeroall() // zero all xmm/ymm registers. mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 3*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 3*8)) // prefetch c + 5*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(rsi, rsi, 2), rbp) // rbp = 3*cs_c; prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 5*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 5*8)) // prefetch c + 2*cs_c prefetch(0, mem(rcx, rbp, 1, 5*8)) // prefetch c + 3*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 lea(mem(rax, r9, 8), rdx) // lea(mem(rdx, r9, 8), rdx) // rdx = a + 16*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 1 prefetch(0, mem(rdx, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, r9, 1, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) // ---------------------------------- iteration 2 #if 1 prefetch(0, mem(rdx, r9, 2, 5*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) // ---------------------------------- iteration 3 #if 1 lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 0 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) vbroadcastsd(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) vfmadd231pd(ymm0, ymm3, ymm14) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(ymm0, ymm6, ymm6) vmulpd(ymm0, ymm8, ymm8) vmulpd(ymm0, ymm10, ymm10) vmulpd(ymm0, ymm12, ymm12) vmulpd(ymm0, ymm14, ymm14) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm8) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm10) vmovupd(ymm10, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm12) vmovupd(ymm12, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm14) vmovupd(ymm14, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm4) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm6) vfmadd231pd(mem(rcx, rsi, 2), ymm3, ymm8) vfmadd231pd(mem(rcx, rax, 1), ymm3, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vfmadd231pd(mem(rdx ), xmm3, xmm0) vfmadd231pd(mem(rdx, rsi, 1), xmm3, xmm1) vfmadd231pd(mem(rdx, rsi, 2), xmm3, xmm2) vfmadd231pd(mem(rdx, rax, 1), xmm3, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm10, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm12, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm14, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vunpcklpd(ymm14, ymm12, ymm0) vunpckhpd(ymm14, ymm12, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vmovupd(xmm0, mem(rdx )) vmovupd(xmm1, mem(rdx, rsi, 1)) vmovupd(xmm2, mem(rdx, rsi, 2)) vmovupd(xmm4, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) label(.DDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_dgemmsup_rv_haswell_asm_5x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vzeroall() // zero all xmm/ymm registers. mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 3*8)) // prefetch c + 4*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(rsi, rsi, 2), rbp) // rbp = 3*cs_c; prefetch(0, mem(rcx, 4*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 4*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 4*8)) // prefetch c + 2*cs_c prefetch(0, mem(rcx, rbp, 1, 4*8)) // prefetch c + 3*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 lea(mem(rax, r9, 8), rdx) // lea(mem(rdx, r9, 8), rdx) // rdx = a + 16*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 1 prefetch(0, mem(rdx, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, r9, 1, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) // ---------------------------------- iteration 2 #if 1 prefetch(0, mem(rdx, r9, 2, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) // ---------------------------------- iteration 3 #if 1 lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 0 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) vbroadcastsd(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm12) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(ymm0, ymm6, ymm6) vmulpd(ymm0, ymm8, ymm8) vmulpd(ymm0, ymm10, ymm10) vmulpd(ymm0, ymm12, ymm12) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm8) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm10) vmovupd(ymm10, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm12) vmovupd(ymm12, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm4) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm6) vfmadd231pd(mem(rcx, rsi, 2), ymm3, ymm8) vfmadd231pd(mem(rcx, rax, 1), ymm3, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vmovlpd(mem(rdx ), xmm0, xmm0) vmovhpd(mem(rdx, rsi, 1), xmm0, xmm0) vmovlpd(mem(rdx, rsi, 2), xmm1, xmm1) vmovhpd(mem(rdx, rax, 1), xmm1, xmm1) vperm2f128(imm(0x20), ymm1, ymm0, ymm0) vfmadd213pd(ymm12, ymm3, ymm0) vextractf128(imm(1), ymm0, xmm1) vmovlpd(xmm0, mem(rdx )) vmovhpd(xmm0, mem(rdx, rsi, 1)) vmovlpd(xmm1, mem(rdx, rsi, 2)) vmovhpd(xmm1, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm10, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm12, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vmovupd(ymm12, ymm0) vextractf128(imm(1), ymm0, xmm1) vmovlpd(xmm0, mem(rdx )) vmovhpd(xmm0, mem(rdx, rsi, 1)) vmovlpd(xmm1, mem(rdx, rsi, 2)) vmovhpd(xmm1, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) label(.DDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_dgemmsup_rv_haswell_asm_4x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vzeroall() // zero all xmm/ymm registers. mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(rsi, rsi, 2), rbp) // rbp = 3*cs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 3*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 3*8)) // prefetch c + 2*cs_c prefetch(0, mem(rcx, rbp, 1, 3*8)) // prefetch c + 3*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 lea(mem(rax, r9, 8), rdx) // lea(mem(rdx, r9, 8), rdx) // rdx = a + 16*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 1 prefetch(0, mem(rdx, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, r9, 1, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) // ---------------------------------- iteration 2 #if 1 prefetch(0, mem(rdx, r9, 2, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) // ---------------------------------- iteration 3 #if 1 lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 0 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) vbroadcastsd(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) vfmadd231pd(ymm0, ymm3, ymm10) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(ymm0, ymm6, ymm6) vmulpd(ymm0, ymm8, ymm8) vmulpd(ymm0, ymm10, ymm10) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; //lea(mem(rcx, rdi, 4), r14) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm8) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm10) vmovupd(ymm10, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), ymm3, ymm4) vfmadd231pd(mem(rcx, rsi, 1), ymm3, ymm6) vfmadd231pd(mem(rcx, rsi, 2), ymm3, ymm8) vfmadd231pd(mem(rcx, rax, 1), ymm3, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm8, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm10, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vmovupd(ymm4, mem(rcx )) vmovupd(ymm6, mem(rcx, rsi, 1)) vmovupd(ymm8, mem(rcx, rsi, 2)) vmovupd(ymm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) label(.DDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_dgemmsup_rv_haswell_asm_3x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vzeroall() // zero all xmm/ymm registers. mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) //lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c //lea(mem(rcx, rdi, 2), rdx) // //lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(rsi, rsi, 2), rbp) // rbp = 3*cs_c; prefetch(0, mem(rcx, 2*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 2*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 2*8)) // prefetch c + 2*cs_c prefetch(0, mem(rcx, rbp, 1, 2*8)) // prefetch c + 3*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 lea(mem(rax, r9, 8), rdx) // lea(mem(rdx, r9, 8), rdx) // rdx = a + 16*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 1 prefetch(0, mem(rdx, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, r9, 1, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) // ---------------------------------- iteration 2 #if 1 prefetch(0, mem(rdx, r9, 2, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) // ---------------------------------- iteration 3 #if 1 lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 0 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) vbroadcastsd(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm8) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(ymm0, ymm6, ymm6) vmulpd(ymm0, ymm8, ymm8) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 2), rdx) // load address of c + 2*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm8) vmovupd(ymm8, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vextractf128(imm(0x1), ymm4, xmm12) vextractf128(imm(0x1), ymm6, xmm13) vextractf128(imm(0x1), ymm8, xmm14) vextractf128(imm(0x1), ymm10, xmm15) vbroadcastsd(mem(rbx), ymm3) vfmadd231pd(mem(rcx ), xmm3, xmm4) vfmadd231pd(mem(rcx, rsi, 1), xmm3, xmm6) vfmadd231pd(mem(rcx, rsi, 2), xmm3, xmm8) vfmadd231pd(mem(rcx, rax, 1), xmm3, xmm10) vmovupd(xmm4, mem(rcx )) vmovupd(xmm6, mem(rcx, rsi, 1)) vmovupd(xmm8, mem(rcx, rsi, 2)) vmovupd(xmm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vfmadd231sd(mem(rdx ), xmm3, xmm12) vfmadd231sd(mem(rdx, rsi, 1), xmm3, xmm13) vfmadd231sd(mem(rdx, rsi, 2), xmm3, xmm14) vfmadd231sd(mem(rdx, rax, 1), xmm3, xmm15) vmovsd(xmm12, mem(rdx )) vmovsd(xmm13, mem(rdx, rsi, 1)) vmovsd(xmm14, mem(rdx, rsi, 2)) vmovsd(xmm15, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm8, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vunpcklpd(ymm10, ymm8, ymm2) vunpckhpd(ymm10, ymm8, ymm3) vinsertf128(imm(0x1), xmm2, ymm0, ymm4) vinsertf128(imm(0x1), xmm3, ymm1, ymm6) vperm2f128(imm(0x31), ymm2, ymm0, ymm8) vperm2f128(imm(0x31), ymm3, ymm1, ymm10) vextractf128(imm(0x1), ymm4, xmm12) vextractf128(imm(0x1), ymm6, xmm13) vextractf128(imm(0x1), ymm8, xmm14) vextractf128(imm(0x1), ymm10, xmm15) vmovupd(xmm4, mem(rcx )) vmovupd(xmm6, mem(rcx, rsi, 1)) vmovupd(xmm8, mem(rcx, rsi, 2)) vmovupd(xmm10, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) vmovsd(xmm12, mem(rdx )) vmovsd(xmm13, mem(rdx, rsi, 1)) vmovsd(xmm14, mem(rdx, rsi, 2)) vmovsd(xmm15, mem(rdx, rax, 1)) //lea(mem(rdx, rsi, 4), rdx) label(.DDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_dgemmsup_rv_haswell_asm_2x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vzeroall() // zero all xmm/ymm registers. mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) //lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c //lea(mem(rcx, rdi, 2), rdx) // //lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(rsi, rsi, 2), rbp) // rbp = 3*cs_c; prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 1*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 1*8)) // prefetch c + 2*cs_c prefetch(0, mem(rcx, rbp, 1, 1*8)) // prefetch c + 3*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 lea(mem(rax, r9, 8), rdx) // lea(mem(rdx, r9, 8), rdx) // rdx = a + 16*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 1 prefetch(0, mem(rdx, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, r9, 1, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) // ---------------------------------- iteration 2 #if 1 prefetch(0, mem(rdx, r9, 2, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) // ---------------------------------- iteration 3 #if 1 lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 0 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) vbroadcastsd(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) vfmadd231pd(ymm0, ymm3, ymm6) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha vmulpd(ymm0, ymm6, ymm6) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; //lea(mem(rcx, rdi, 4), r14) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm6) vmovupd(ymm6, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vfmadd231pd(mem(rcx ), xmm3, xmm0) vfmadd231pd(mem(rcx, rsi, 1), xmm3, xmm1) vfmadd231pd(mem(rcx, rsi, 2), xmm3, xmm2) vfmadd231pd(mem(rcx, rax, 1), xmm3, xmm4) vmovupd(xmm0, mem(rcx )) vmovupd(xmm1, mem(rcx, rsi, 1)) vmovupd(xmm2, mem(rcx, rsi, 2)) vmovupd(xmm4, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) add(rdi, rcx) vmovupd(ymm6, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vunpcklpd(ymm6, ymm4, ymm0) vunpckhpd(ymm6, ymm4, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vextractf128(imm(0x1), ymm1, xmm4) vmovupd(xmm0, mem(rcx )) vmovupd(xmm1, mem(rcx, rsi, 1)) vmovupd(xmm2, mem(rcx, rsi, 2)) vmovupd(xmm4, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) label(.DDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_dgemmsup_rv_haswell_asm_1x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vzeroall() // zero all xmm/ymm registers. mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 8), r8) // rs_a *= sizeof(double) lea(mem(, r9, 8), r9) // cs_a *= sizeof(double) //lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b //mov(var(cs_b), r11) // load cs_b lea(mem(, r10, 8), r10) // rs_b *= sizeof(double) //lea(mem(, r11, 8), r11) // cs_b *= sizeof(double) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 8), rdi) // rs_c *= sizeof(double) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLPFETCH) // jump to column storage case label(.DROWPFETCH) // row-stored prefetching on c //lea(mem(rcx, rdi, 2), rdx) // //lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c jmp(.DPOSTPFETCH) // jump to end of prefetching c label(.DCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 8), rsi) // cs_c *= sizeof(double) lea(mem(rsi, rsi, 2), rbp) // rbp = 3*cs_c; prefetch(0, mem(rcx, 0*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 0*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 0*8)) // prefetch c + 2*cs_c prefetch(0, mem(rcx, rbp, 1, 0*8)) // prefetch c + 3*cs_c label(.DPOSTPFETCH) // done prefetching c #if 1 lea(mem(rax, r9, 8), rdx) // lea(mem(rdx, r9, 8), rdx) // rdx = a + 16*cs_a; #endif mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.DCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.DLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 #if 1 prefetch(0, mem(rdx, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) // ---------------------------------- iteration 1 #if 0 prefetch(0, mem(rdx, r9, 1, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) // ---------------------------------- iteration 2 #if 1 prefetch(0, mem(rdx, r9, 2, 4*8)) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) // ---------------------------------- iteration 3 #if 1 lea(mem(rdx, r9, 4), rdx) // a_prefetch += 4*cs_a; #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) dec(rsi) // i -= 1; jne(.DLOOPKITER) // iterate again if i != 0. label(.DCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.DPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.DLOOPKLEFT) // EDGE LOOP #if 0 prefetch(0, mem(rdx, 5*8)) add(r9, rdx) #endif vmovupd(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastsd(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231pd(ymm0, ymm2, ymm4) dec(rsi) // i -= 1; jne(.DLOOPKLEFT) // iterate again if i != 0. label(.DPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastsd(mem(rax), ymm0) // load alpha and duplicate vbroadcastsd(mem(rbx), ymm3) // load beta and duplicate vmulpd(ymm0, ymm4, ymm4) // scale by alpha mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(double) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; //lea(mem(rcx, rdi, 4), r14) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorpd(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomisd(xmm0, xmm3) // set ZF if beta == 0. je(.DBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORED) // jump to column storage case label(.DROWSTORED) vfmadd231pd(mem(rcx, 0*32), ymm3, ymm4) vmovupd(ymm4, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORED) // begin I/O on columns 0-3 vmovlpd(mem(rcx ), xmm0, xmm0) vmovhpd(mem(rcx, rsi, 1), xmm0, xmm0) vmovlpd(mem(rcx, rsi, 2), xmm1, xmm1) vmovhpd(mem(rcx, rax, 1), xmm1, xmm1) vperm2f128(imm(0x20), ymm1, ymm0, ymm0) vfmadd213pd(ymm4, ymm3, ymm0) vextractf128(imm(1), ymm0, xmm1) vmovlpd(xmm0, mem(rcx )) vmovhpd(xmm0, mem(rcx, rsi, 1)) vmovlpd(xmm1, mem(rcx, rsi, 2)) vmovhpd(xmm1, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) jmp(.DDONE) // jump to end. label(.DBETAZERO) cmp(imm(8), rdi) // set ZF if (8*rs_c) == 8. jz(.DCOLSTORBZ) // jump to column storage case label(.DROWSTORBZ) vmovupd(ymm4, mem(rcx, 0*32)) //add(rdi, rcx) jmp(.DDONE) // jump to end. label(.DCOLSTORBZ) // begin I/O on columns 0-3 vmovupd(ymm4, ymm0) vextractf128(imm(1), ymm0, xmm1) vmovlpd(xmm0, mem(rcx )) vmovhpd(xmm0, mem(rcx, rsi, 1)) vmovlpd(xmm1, mem(rcx, rsi, 2)) vmovhpd(xmm1, mem(rcx, rax, 1)) //lea(mem(rcx, rsi, 4), rcx) label(.DDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) }