/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Copyright (C) 2019, Advanced Micro Devices, Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #define BLIS_ASM_SYNTAX_ATT #include "bli_x86_asm_macros.h" /* rrc: -------- ------ | | | | | | | | -------- ------ | | | | | | | | -------- += ------ ... | | | | | | | | -------- ------ | | | | | | | | -------- ------ : -------- ------ : Assumptions: - C is row-stored and B is column-stored; - A is row-stored; - m0 and n0 are at most MR and NR, respectively. Therefore, this (r)ow-preferential microkernel is well-suited for a dot-product-based accumulation that performs vector loads from both A and B. */ // Prototype reference microkernels. GEMMSUP_KER_PROT( float, s, gemmsup_r_haswell_ref ) void bli_sgemmsup_rd_haswell_asm_6x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter32 = k0 / 32; uint64_t k_left32 = k0 % 32; uint64_t k_iter8 = k_left32 / 8; uint64_t k_left1 = k_left32 % 8; uint64_t m_iter = m0 / 3; //uint64_t m_left = m0 % 3; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() //vzeroall() // zero all xmm/ymm registers. //mov(var(a), r14) // load address of a. mov(var(rs_a), r8) // load rs_a //mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) //lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) //lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a //mov(var(b), rdx) // load address of b. //mov(var(rs_b), r10) // load rs_b mov(var(cs_b), r11) // load cs_b //lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) lea(mem(, r11, 4), r11) // cs_b *= sizeof(float) lea(mem(r11, r11, 2), r13) // r13 = 3*cs_b lea(mem(r8, r8, 2), r10) // r10 = 3*rs_a //mov(var(c), r12) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) // r12 = rcx = c // r14 = rax = a // rdx = rbx = b // r9 = m dim index ii // r15 = n dim index jj mov(imm(0), r15) // jj = 0; label(.SLOOP3X4J) // LOOP OVER jj = [ 0 1 ... ] mov(var(a), r14) // load address of a mov(var(b), rdx) // load address of b mov(var(c), r12) // load address of c lea(mem( , r15, 1), rsi) // rsi = r15 = 4*jj; imul(imm(1*4), rsi) // rsi *= cs_c*sizeof(float) = 1*4 lea(mem(r12, rsi, 1), r12) // r12 = c + 4*jj*cs_c; lea(mem( , r15, 1), rsi) // rsi = r15 = 4*jj; imul(r11, rsi) // rsi *= cs_b; lea(mem(rdx, rsi, 1), rdx) // rbx = b + 4*jj*cs_b; mov(var(m_iter), r9) // ii = m_iter; label(.SLOOP3X4I) // LOOP OVER ii = [ m_iter ... 1 0 ] #if 0 vzeroall() // zero all xmm/ymm registers. #else // skylake can execute 3 vxorps ipc with // a latency of 1 cycle, while vzeroall // has a latency of 12 cycles. vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) #endif lea(mem(r12), rcx) // rcx = c_iijj; lea(mem(r14), rax) // rax = a_ii; lea(mem(rdx), rbx) // rbx = b_jj; #if 1 //mov(var(rs_c), rdi) // load rs_c //lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) prefetch(0, mem(rcx, 1*4)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 1*4)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 1*4)) // prefetch c + 2*rs_c #endif lea(mem(r8, r8, 4), rbp) // rbp = 5*rs_a mov(var(k_iter32), rsi) // i = k_iter32; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKITER8) // if i == 0, jump to code that // contains the k_iter8 loop. label(.SLOOPKITER32) // MAIN LOOP // ---------------------------------- iteration 0 #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a prefetch(0, mem(rax, r8, 4, 0*8)) // prefetch rax + 4*cs_a prefetch(0, mem(rax, rbp, 1, 0*8)) // prefetch rax + 5*cs_a #endif vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) vmovups(mem(rax, r8, 2), ymm2) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vfmadd231ps(ymm2, ymm3, ymm6) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vfmadd231ps(ymm2, ymm3, ymm9) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vfmadd231ps(ymm2, ymm3, ymm12) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) vfmadd231ps(ymm2, ymm3, ymm15) // ---------------------------------- iteration 1 vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) vmovups(mem(rax, r8, 2), ymm2) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vfmadd231ps(ymm2, ymm3, ymm6) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vfmadd231ps(ymm2, ymm3, ymm9) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vfmadd231ps(ymm2, ymm3, ymm12) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) vfmadd231ps(ymm2, ymm3, ymm15) // ---------------------------------- iteration 2 #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a prefetch(0, mem(rax, r8, 4, 0*8)) // prefetch rax + 4*cs_a prefetch(0, mem(rax, rbp, 1, 0*8)) // prefetch rax + 5*cs_a #endif vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) vmovups(mem(rax, r8, 2), ymm2) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vfmadd231ps(ymm2, ymm3, ymm6) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vfmadd231ps(ymm2, ymm3, ymm9) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vfmadd231ps(ymm2, ymm3, ymm12) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) vfmadd231ps(ymm2, ymm3, ymm15) // ---------------------------------- iteration 3 vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) vmovups(mem(rax, r8, 2), ymm2) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vfmadd231ps(ymm2, ymm3, ymm6) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vfmadd231ps(ymm2, ymm3, ymm9) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vfmadd231ps(ymm2, ymm3, ymm12) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) vfmadd231ps(ymm2, ymm3, ymm15) dec(rsi) // i -= 1; jne(.SLOOPKITER32) // iterate again if i != 0. label(.SCONSIDKITER8) mov(var(k_iter8), rsi) // i = k_iter8; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT1) // if i == 0, jump to code that // considers k_left1 loop. // else, we prepare to enter k_iter8 loop. label(.SLOOPKITER8) // EDGE LOOP (ymm) #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a prefetch(0, mem(rax, r8, 4, 0*8)) // prefetch rax + 4*cs_a prefetch(0, mem(rax, rbp, 1, 0*8)) // prefetch rax + 5*cs_a #endif vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) vmovups(mem(rax, r8, 2), ymm2) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vfmadd231ps(ymm2, ymm3, ymm6) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vfmadd231ps(ymm2, ymm3, ymm9) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vfmadd231ps(ymm2, ymm3, ymm12) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) vfmadd231ps(ymm2, ymm3, ymm15) dec(rsi) // i -= 1; jne(.SLOOPKITER8) // iterate again if i != 0. label(.SCONSIDKLEFT1) mov(var(k_left1), rsi) // i = k_left1; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left1 loop. label(.SLOOPKLEFT1) // EDGE LOOP (scalar) // NOTE: We must use ymm registers here bc // using the xmm registers would zero out the // high bits of the destination registers, // which would destory intermediate results. vmovss(mem(rax ), xmm0) vmovss(mem(rax, r8, 1), xmm1) vmovss(mem(rax, r8, 2), xmm2) add(imm(1*4), rax) // a += 1*cs_a = 1*4; vmovss(mem(rbx ), xmm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vfmadd231ps(ymm2, ymm3, ymm6) vmovss(mem(rbx, r11, 1), xmm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vfmadd231ps(ymm2, ymm3, ymm9) vmovss(mem(rbx, r11, 2), xmm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vfmadd231ps(ymm2, ymm3, ymm12) vmovss(mem(rbx, r13, 1), xmm3) add(imm(1*4), rbx) // b += 1*rs_b = 1*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) vfmadd231ps(ymm2, ymm3, ymm15) dec(rsi) // i -= 1; jne(.SLOOPKLEFT1) // iterate again if i != 0. label(.SPOSTACCUM) // ymm4 ymm7 ymm10 ymm13 // ymm5 ymm8 ymm11 ymm14 // ymm6 ymm9 ymm12 ymm15 vhaddps( ymm7, ymm4, ymm0 ) vextractf128(imm(1), ymm0, xmm1 ) vhaddps( xmm1, xmm0, xmm0 ) vpermilps(imm(0xd8), xmm0, xmm0) vhaddps( xmm0, xmm0, xmm0 ) vhaddps( ymm13, ymm10, ymm2 ) vextractf128(imm(1), ymm2, xmm3 ) vhaddps( xmm3, xmm2, xmm2 ) vpermilps(imm(0xd8), xmm2, xmm2) vhaddps( xmm2, xmm2, xmm2 ) vshufps(imm(0x44), xmm2, xmm0, xmm4) // xmm4[0] = sum(ymm4); xmm4[1] = sum(ymm7) // xmm4[2] = sum(ymm10); xmm4[3] = sum(ymm13) vhaddps( ymm8, ymm5, ymm0 ) vextractf128(imm(1), ymm0, xmm1 ) vhaddps( xmm1, xmm0, xmm0 ) vpermilps(imm(0xd8), xmm0, xmm0) vhaddps( xmm0, xmm0, xmm0 ) vhaddps( ymm14, ymm11, ymm2 ) vextractf128(imm(1), ymm2, xmm3 ) vhaddps( xmm3, xmm2, xmm2 ) vpermilps(imm(0xd8), xmm2, xmm2) vhaddps( xmm2, xmm2, xmm2 ) vshufps(imm(0x44), xmm2, xmm0, xmm5) // xmm5[0] = sum(ymm5); xmm5[1] = sum(ymm8) // xmm5[2] = sum(ymm11); xmm5[3] = sum(ymm14) vhaddps( ymm9, ymm6, ymm0 ) vextractf128(imm(1), ymm0, xmm1 ) vhaddps( xmm1, xmm0, xmm0 ) vpermilps(imm(0xd8), xmm0, xmm0) vhaddps( xmm0, xmm0, xmm0 ) vhaddps( ymm15, ymm12, ymm2 ) vextractf128(imm(1), ymm2, xmm3 ) vhaddps( xmm3, xmm2, xmm2 ) vpermilps(imm(0xd8), xmm2, xmm2) vhaddps( xmm2, xmm2, xmm2 ) vshufps(imm(0x44), xmm2, xmm0, xmm6) // xmm6[0] = sum(ymm6); xmm6[1] = sum(ymm9) // xmm6[2] = sum(ymm12); xmm6[3] = sum(ymm15) //mov(var(rs_c), rdi) // load rs_c //lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm5, xmm5) vmulps(xmm0, xmm6, xmm6) //mov(var(cs_c), rsi) // load cs_c //lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(float) // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm5) vmovups(xmm5, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovups(xmm6, mem(rcx)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SBETAZERO) label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vmovups(xmm5, mem(rcx)) add(rdi, rcx) vmovups(xmm6, mem(rcx)) //add(rdi, rcx) label(.SDONE) lea(mem(r12, rdi, 2), r12) // lea(mem(r12, rdi, 1), r12) // c_ii = r12 += 3*rs_c lea(mem(r14, r8, 2), r14) // lea(mem(r14, r8, 1), r14) // a_ii = r14 += 3*rs_a dec(r9) // ii -= 1; jne(.SLOOP3X4I) // iterate again if ii != 0. add(imm(4), r15) // jj += 4; cmp(imm(8), r15) // compare jj to 8 jl(.SLOOP3X4J) // if jj < 8, jump to beginning // of jj loop; otherwise, loop ends. label(.SRETURN) end_asm( : // output operands (none) : // input operands [m_iter] "m" (m_iter), [k_iter32] "m" (k_iter32), [k_iter8] "m" (k_iter8), [k_left1] "m" (k_left1), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rd_haswell_asm_2x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter32 = k0 / 32; uint64_t k_left32 = k0 % 32; uint64_t k_iter8 = k_left32 / 8; uint64_t k_left1 = k_left32 % 8; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() //vzeroall() // zero all xmm/ymm registers. mov(var(a), r14) // load address of a. mov(var(rs_a), r8) // load rs_a //mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) //lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) //lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rdx) // load address of b. //mov(var(rs_b), r10) // load rs_b mov(var(cs_b), r11) // load cs_b //lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) lea(mem(, r11, 4), r11) // cs_b *= sizeof(float) lea(mem(r11, r11, 2), r13) // r13 = 3*cs_b //lea(mem(r8, r8, 2), r10) // r10 = 3*rs_a mov(var(c), r12) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) // r12 = rcx = c // r14 = rax = a // rdx = rbx = b // r9 = m dim index ii // r15 = n dim index jj mov(imm(0), r15) // jj = 0; label(.SLOOP3X4J) // LOOP OVER jj = [ 0 1 ... ] #if 0 vzeroall() // zero all xmm/ymm registers. #else // skylake can execute 3 vxorps ipc with // a latency of 1 cycle, while vzeroall // has a latency of 12 cycles. vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) #endif lea(mem( , r15, 1), rsi) // rsi = r15 = 4*jj; imul(imm(1*4), rsi) // rsi *= cs_c*sizeof(float) = 1*4 lea(mem(r12, rsi, 1), rcx) // rcx = c + 4*jj*cs_c; lea(mem( , r15, 1), rsi) // rsi = r15 = 4*jj; imul(r11, rsi) // rsi *= cs_b; lea(mem(rdx, rsi, 1), rbx) // rbx = b + 4*jj*cs_b; lea(mem(r14), rax) // rax = a; #if 1 //mov(var(rs_c), rdi) // load rs_c //lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) prefetch(0, mem(rcx, 1*4)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 1*4)) // prefetch c + 1*rs_c #endif mov(var(k_iter32), rsi) // i = k_iter32; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKITER8) // if i == 0, jump to code that // contains the k_iter8 loop. label(.SLOOPKITER32) // MAIN LOOP // ---------------------------------- iteration 0 #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a prefetch(0, mem(rax, r8, 4, 0*8)) // prefetch rax + 4*cs_a #endif vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) // ---------------------------------- iteration 1 vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) // ---------------------------------- iteration 2 #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a prefetch(0, mem(rax, r8, 4, 0*8)) // prefetch rax + 4*cs_a #endif vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) // ---------------------------------- iteration 3 vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) dec(rsi) // i -= 1; jne(.SLOOPKITER32) // iterate again if i != 0. label(.SCONSIDKITER8) mov(var(k_iter8), rsi) // i = k_iter8; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT1) // if i == 0, jump to code that // considers k_left1 loop. // else, we prepare to enter k_iter8 loop. label(.SLOOPKITER8) // EDGE LOOP (ymm) #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a prefetch(0, mem(rax, r8, 4, 0*8)) // prefetch rax + 4*cs_a #endif vmovups(mem(rax ), ymm0) vmovups(mem(rax, r8, 1), ymm1) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) dec(rsi) // i -= 1; jne(.SLOOPKITER8) // iterate again if i != 0. label(.SCONSIDKLEFT1) mov(var(k_left1), rsi) // i = k_left1; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left1 loop. label(.SLOOPKLEFT1) // EDGE LOOP (scalar) // NOTE: We must use ymm registers here bc // using the xmm registers would zero out the // high bits of the destination registers, // which would destory intermediate results. vmovss(mem(rax ), xmm0) vmovss(mem(rax, r8, 1), xmm1) add(imm(1*4), rax) // a += 1*cs_a = 1*4; vmovss(mem(rbx ), xmm3) vfmadd231ps(ymm0, ymm3, ymm4) vfmadd231ps(ymm1, ymm3, ymm5) vmovss(mem(rbx, r11, 1), xmm3) vfmadd231ps(ymm0, ymm3, ymm7) vfmadd231ps(ymm1, ymm3, ymm8) vmovss(mem(rbx, r11, 2), xmm3) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vmovss(mem(rbx, r13, 1), xmm3) add(imm(1*4), rbx) // b += 1*rs_b = 1*4; vfmadd231ps(ymm0, ymm3, ymm13) vfmadd231ps(ymm1, ymm3, ymm14) dec(rsi) // i -= 1; jne(.SLOOPKLEFT1) // iterate again if i != 0. label(.SPOSTACCUM) // ymm4 ymm7 ymm10 ymm13 // ymm5 ymm8 ymm11 ymm14 vhaddps( ymm7, ymm4, ymm0 ) vextractf128(imm(1), ymm0, xmm1 ) vhaddps( xmm1, xmm0, xmm0 ) vpermilps(imm(0xd8), xmm0, xmm0) vhaddps( xmm0, xmm0, xmm0 ) vhaddps( ymm13, ymm10, ymm2 ) vextractf128(imm(1), ymm2, xmm3 ) vhaddps( xmm3, xmm2, xmm2 ) vpermilps(imm(0xd8), xmm2, xmm2) vhaddps( xmm2, xmm2, xmm2 ) vshufps(imm(0x44), xmm2, xmm0, xmm4) // xmm4[0] = sum(ymm4); xmm4[1] = sum(ymm7) // xmm4[2] = sum(ymm10); xmm4[3] = sum(ymm13) vhaddps( ymm8, ymm5, ymm0 ) vextractf128(imm(1), ymm0, xmm1 ) vhaddps( xmm1, xmm0, xmm0 ) vpermilps(imm(0xd8), xmm0, xmm0) vhaddps( xmm0, xmm0, xmm0 ) vhaddps( ymm14, ymm11, ymm2 ) vextractf128(imm(1), ymm2, xmm3 ) vhaddps( xmm3, xmm2, xmm2 ) vpermilps(imm(0xd8), xmm2, xmm2) vhaddps( xmm2, xmm2, xmm2 ) vshufps(imm(0x44), xmm2, xmm0, xmm5) // xmm5[0] = sum(ymm5); xmm5[1] = sum(ymm8) // xmm5[2] = sum(ymm11); xmm5[3] = sum(ymm14) //mov(var(rs_c), rdi) // load rs_c //lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm5, xmm5) //mov(var(cs_c), rsi) // load cs_c //lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(float) // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm5) vmovups(xmm5, mem(rcx)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SBETAZERO) label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vmovups(xmm5, mem(rcx)) //add(rdi, rcx) label(.SDONE) add(imm(4), r15) // jj += 4; cmp(imm(8), r15) // compare jj to 8 jl(.SLOOP3X4J) // if jj < 8, jump to beginning // of jj loop; otherwise, loop ends. label(.SRETURN) end_asm( : // output operands (none) : // input operands [k_iter32] "m" (k_iter32), [k_iter8] "m" (k_iter8), [k_left1] "m" (k_left1), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rd_haswell_asm_1x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, const void* alpha, const void* a, inc_t rs_a0, inc_t cs_a0, const void* b, inc_t rs_b0, inc_t cs_b0, const void* beta, void* c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* data, const cntx_t* cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter32 = k0 / 32; uint64_t k_left32 = k0 % 32; uint64_t k_iter8 = k_left32 / 8; uint64_t k_left1 = k_left32 % 8; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() //vzeroall() // zero all xmm/ymm registers. mov(var(a), r14) // load address of a. mov(var(rs_a), r8) // load rs_a //mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) //lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) //lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a //lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rdx) // load address of b. //mov(var(rs_b), r10) // load rs_b mov(var(cs_b), r11) // load cs_b //lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) lea(mem(, r11, 4), r11) // cs_b *= sizeof(float) lea(mem(r11, r11, 2), r13) // r13 = 3*cs_b //lea(mem(r8, r8, 2), r10) // r10 = 3*rs_a mov(var(c), r12) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) // r12 = rcx = c // r14 = rax = a // rdx = rbx = b // r9 = m dim index ii // r15 = n dim index jj mov(imm(0), r15) // jj = 0; label(.SLOOP3X4J) // LOOP OVER jj = [ 0 1 ... ] #if 0 vzeroall() // zero all xmm/ymm registers. #else // skylake can execute 3 vxorps ipc with // a latency of 1 cycle, while vzeroall // has a latency of 12 cycles. vxorps(ymm4, ymm4, ymm4) vxorps(ymm7, ymm7, ymm7) vxorps(ymm10, ymm10, ymm10) vxorps(ymm13, ymm13, ymm13) #endif lea(mem( , r15, 1), rsi) // rsi = r15 = 4*jj; imul(imm(1*4), rsi) // rsi *= cs_c*sizeof(float) = 1*4 lea(mem(r12, rsi, 1), rcx) // rcx = c + 4*jj*cs_c; lea(mem( , r15, 1), rsi) // rsi = r15 = 4*jj; imul(r11, rsi) // rsi *= cs_b; lea(mem(rdx, rsi, 1), rbx) // rbx = b + 4*jj*cs_b; lea(mem(r14), rax) // rax = a; #if 1 //mov(var(rs_c), rdi) // load rs_c //lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) prefetch(0, mem(rcx, 1*4)) // prefetch c + 0*rs_c #endif mov(var(k_iter32), rsi) // i = k_iter32; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKITER8) // if i == 0, jump to code that // contains the k_iter8 loop. label(.SLOOPKITER32) // MAIN LOOP // ---------------------------------- iteration 0 #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a #endif vmovups(mem(rax ), ymm0) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) // ---------------------------------- iteration 1 vmovups(mem(rax ), ymm0) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) // ---------------------------------- iteration 2 #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a #endif vmovups(mem(rax ), ymm0) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) // ---------------------------------- iteration 3 vmovups(mem(rax ), ymm0) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) dec(rsi) // i -= 1; jne(.SLOOPKITER32) // iterate again if i != 0. label(.SCONSIDKITER8) mov(var(k_iter8), rsi) // i = k_iter8; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT1) // if i == 0, jump to code that // considers k_left1 loop. // else, we prepare to enter k_iter8 loop. label(.SLOOPKITER8) // EDGE LOOP (ymm) #if 0 prefetch(0, mem(rax, r10, 1, 0*8)) // prefetch rax + 3*cs_a #endif vmovups(mem(rax ), ymm0) add(imm(8*4), rax) // a += 8*cs_a = 8*4; vmovups(mem(rbx ), ymm3) vfmadd231ps(ymm0, ymm3, ymm4) vmovups(mem(rbx, r11, 1), ymm3) vfmadd231ps(ymm0, ymm3, ymm7) vmovups(mem(rbx, r11, 2), ymm3) vfmadd231ps(ymm0, ymm3, ymm10) vmovups(mem(rbx, r13, 1), ymm3) add(imm(8*4), rbx) // b += 8*rs_b = 8*4; vfmadd231ps(ymm0, ymm3, ymm13) dec(rsi) // i -= 1; jne(.SLOOPKITER8) // iterate again if i != 0. label(.SCONSIDKLEFT1) mov(var(k_left1), rsi) // i = k_left1; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left1 loop. label(.SLOOPKLEFT1) // EDGE LOOP (scalar) // NOTE: We must use ymm registers here bc // using the xmm registers would zero out the // high bits of the destination registers, // which would destory intermediate results. vmovss(mem(rax ), xmm0) add(imm(1*4), rax) // a += 1*cs_a = 1*4; vmovss(mem(rbx ), xmm3) vfmadd231ps(ymm0, ymm3, ymm4) vmovss(mem(rbx, r11, 1), xmm3) vfmadd231ps(ymm0, ymm3, ymm7) vmovss(mem(rbx, r11, 2), xmm3) vfmadd231ps(ymm0, ymm3, ymm10) vmovss(mem(rbx, r13, 1), xmm3) add(imm(1*4), rbx) // b += 1*rs_b = 1*4; vfmadd231ps(ymm0, ymm3, ymm13) dec(rsi) // i -= 1; jne(.SLOOPKLEFT1) // iterate again if i != 0. label(.SPOSTACCUM) // ymm4 ymm7 ymm10 ymm13 // ymm5 ymm8 ymm11 ymm14 vhaddps( ymm7, ymm4, ymm0 ) vextractf128(imm(1), ymm0, xmm1 ) vhaddps( xmm1, xmm0, xmm0 ) vpermilps(imm(0xd8), xmm0, xmm0) vhaddps( xmm0, xmm0, xmm0 ) vhaddps( ymm13, ymm10, ymm2 ) vextractf128(imm(1), ymm2, xmm3 ) vhaddps( xmm3, xmm2, xmm2 ) vpermilps(imm(0xd8), xmm2, xmm2) vhaddps( xmm2, xmm2, xmm2 ) vshufps(imm(0x44), xmm2, xmm0, xmm4) // xmm4[0] = sum(ymm4); xmm4[1] = sum(ymm7) // xmm4[2] = sum(ymm10); xmm4[3] = sum(ymm13) //mov(var(rs_c), rdi) // load rs_c //lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha //mov(var(cs_c), rsi) // load cs_c //lea(mem(, rsi, 8), rsi) // rsi = cs_c * sizeof(float) // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SBETAZERO) label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) //add(rdi, rcx) label(.SDONE) add(imm(4), r15) // jj += 4; cmp(imm(8), r15) // compare jj to 8 jl(.SLOOP3X4J) // if jj < 8, jump to beginning // of jj loop; otherwise, loop ends. label(.SRETURN) end_asm( : // output operands (none) : // input operands [k_iter32] "m" (k_iter32), [k_iter8] "m" (k_iter8), [k_left1] "m" (k_left1), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) }