/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #include #define BLIS_ASM_SYNTAX_INTEL #include "bli_x86_asm_macros.h" #define UNROLL_K 32 #define SCATTER_PREFETCH_C 1 #define PREFETCH_A_L2 0 #define PREFETCH_B_L2 0 #define L2_PREFETCH_DIST 64 #define A_L1_PREFETCH_DIST 18 #define B_L1_PREFETCH_DIST 18 #define LOOP_ALIGN ALIGN16 #define UPDATE_C_FOUR_ROWS(R1,R2,R3,R4) \ \ VMULPD(ZMM(R1), ZMM(R1), ZMM(0)) \ VMULPD(ZMM(R2), ZMM(R2), ZMM(0)) \ VMULPD(ZMM(R3), ZMM(R3), ZMM(0)) \ VMULPD(ZMM(R4), ZMM(R4), ZMM(0)) \ VFMADD231PD(ZMM(R1), ZMM(1), MEM(RCX )) \ VFMADD231PD(ZMM(R2), ZMM(1), MEM(RCX,RAX,1)) \ VFMADD231PD(ZMM(R3), ZMM(1), MEM(RCX,RAX,2)) \ VFMADD231PD(ZMM(R4), ZMM(1), MEM(RCX,RDI,1)) \ VMOVUPD(MEM(RCX ), ZMM(R1)) \ VMOVUPD(MEM(RCX,RAX,1), ZMM(R2)) \ VMOVUPD(MEM(RCX,RAX,2), ZMM(R3)) \ VMOVUPD(MEM(RCX,RDI,1), ZMM(R4)) \ LEA(RCX, MEM(RCX,RAX,4)) #define UPDATE_C_BZ_FOUR_ROWS(R1,R2,R3,R4) \ \ VMULPD(ZMM(R1), ZMM(R1), ZMM(0)) \ VMULPD(ZMM(R2), ZMM(R2), ZMM(0)) \ VMULPD(ZMM(R3), ZMM(R3), ZMM(0)) \ VMULPD(ZMM(R4), ZMM(R4), ZMM(0)) \ VMOVUPD(MEM(RCX ), ZMM(R1)) \ VMOVUPD(MEM(RCX,RAX,1), ZMM(R2)) \ VMOVUPD(MEM(RCX,RAX,2), ZMM(R3)) \ VMOVUPD(MEM(RCX,RDI,1), ZMM(R4)) \ LEA(RCX, MEM(RCX,RAX,4)) #define UPDATE_C_ROW_SCATTERED(NUM) \ \ KXNORW(K(1), K(0), K(0)) \ KXNORW(K(2), K(0), K(0)) \ VMULPD(ZMM(NUM), ZMM(NUM), ZMM(0)) \ VGATHERDPD(ZMM(3) MASK_K(1), MEM(RCX,YMM(2),8)) \ VFMADD231PD(ZMM(NUM), ZMM(3), ZMM(1)) \ VSCATTERDPD(MEM(RCX,YMM(2),8) MASK_K(2), ZMM(NUM)) \ ADD(RCX, RAX) #define UPDATE_C_BZ_ROW_SCATTERED(NUM) \ \ KXNORW(K(1), K(0), K(0)) \ VMULPD(ZMM(NUM), ZMM(NUM), ZMM(0)) \ VSCATTERDPD(MEM(RCX,YMM(2),8) MASK_K(1), ZMM(NUM)) \ ADD(RCX, RAX) #define PREFETCH_A_L1_1(n) PREFETCH(0, MEM(RAX,(A_L1_PREFETCH_DIST+n)*24*8)) #define PREFETCH_A_L1_2(n) PREFETCH(0, MEM(RAX,(A_L1_PREFETCH_DIST+n)*24*8+64)) #define PREFETCH_A_L1_3(n) PREFETCH(0, MEM(RAX,(A_L1_PREFETCH_DIST+n)*24*8+128)) #if PREFETCH_A_L2 #undef PREFETCH_A_L2 #define PREFETCH_A_L2(n) \ \ PREFETCH(1, MEM(RAX,(L2_PREFETCH_DIST+n)*24*8)) \ PREFETCH(1, MEM(RAX,(L2_PREFETCH_DIST+n)*24*8+64)) \ PREFETCH(1, MEM(RAX,(L2_PREFETCH_DIST+n)*24*8+128)) #else #undef PREFETCH_A_L2 #define PREFETCH_A_L2(...) #endif #define PREFETCH_B_L1(n) PREFETCH(0, MEM(RBX,(B_L1_PREFETCH_DIST+n)*8*8)) #if PREFETCH_B_L2 #undef PREFETCH_B_L2 #define PREFETCH_B_L2(n) PREFETCH(1, MEM(RBX,(L2_PREFETCH_DIST+n)*8*8)) #else #undef PREFETCH_B_L2 #define PREFETCH_B_L2(...) #endif #define PREFETCH_C_L1_1 #define PREFETCH_C_L1_2 #define PREFETCH_C_L1_3 // // n: index in unrolled loop // // a: ZMM register to load into // b: ZMM register to read from // // ...: addressing for A, except for offset // #define SUBITER(n,a,b,...) \ \ PREFETCH_A_L2(n) \ \ VMOVAPD(ZMM(a), MEM(RBX,(n+1)*64)) \ VFMADD231PD(ZMM( 8), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 0)*8)) \ VFMADD231PD(ZMM( 9), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 1)*8)) \ VFMADD231PD(ZMM(10), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 2)*8)) \ PREFETCH_A_L1_1(n) \ VFMADD231PD(ZMM(11), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 3)*8)) \ VFMADD231PD(ZMM(12), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 4)*8)) \ VFMADD231PD(ZMM(13), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 5)*8)) \ PREFETCH_C_L1_1 \ VFMADD231PD(ZMM(14), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 6)*8)) \ VFMADD231PD(ZMM(15), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 7)*8)) \ VFMADD231PD(ZMM(16), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 8)*8)) \ PREFETCH_A_L1_2(n) \ VFMADD231PD(ZMM(17), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 9)*8)) \ VFMADD231PD(ZMM(18), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+10)*8)) \ VFMADD231PD(ZMM(19), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+11)*8)) \ PREFETCH_C_L1_2 \ VFMADD231PD(ZMM(20), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+12)*8)) \ VFMADD231PD(ZMM(21), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+13)*8)) \ VFMADD231PD(ZMM(22), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+14)*8)) \ PREFETCH_A_L1_3(n) \ VFMADD231PD(ZMM(23), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+15)*8)) \ VFMADD231PD(ZMM(24), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+16)*8)) \ VFMADD231PD(ZMM(25), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+17)*8)) \ PREFETCH_C_L1_3 \ VFMADD231PD(ZMM(26), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+18)*8)) \ VFMADD231PD(ZMM(27), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+19)*8)) \ VFMADD231PD(ZMM(28), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+20)*8)) \ PREFETCH_B_L1(n) \ VFMADD231PD(ZMM(29), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+21)*8)) \ VFMADD231PD(ZMM(30), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+22)*8)) \ VFMADD231PD(ZMM(31), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+23)*8)) \ PREFETCH_B_L2(n) //This is an array used for the scatter/gather instructions. static int32_t offsets[32] __attribute__((aligned(64))) = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}; //#define MONITORS //#define LOOPMON void bli_dgemm_knl_asm_24x8 ( dim_t m, dim_t n, dim_t k_, const void* alpha, const void* a, const void* b, const void* beta, void* c, inc_t rs_c_, inc_t cs_c_, auxinfo_t* data, const cntx_t* cntx ) { (void)data; (void)cntx; const double* a_next = bli_auxinfo_next_a( data ); const double* b_next = bli_auxinfo_next_b( data ); int32_t* offsetPtr = &offsets[0]; int64_t k = k_; int64_t rs_c = rs_c_; int64_t cs_c = cs_c_; GEMM_UKR_SETUP_CT( d, 24, 8, true ); #ifdef MONITORS int toph, topl, both, botl, midl, midh, mid2l, mid2h; #endif #ifdef LOOPMON int tlooph, tloopl, blooph, bloopl; #endif BEGIN_ASM() #ifdef MONITORS RDTSC MOV(VAR(topl), EAX) MOV(VAR(toph), EDX) #endif VPXORD(ZMM(8), ZMM(8), ZMM(8)) //clear out registers VMOVAPS(ZMM( 9), ZMM(8)) MOV(R12, VAR(rs_c)) VMOVAPS(ZMM(10), ZMM(8)) MOV(RSI, VAR(k)) //loop index VMOVAPS(ZMM(11), ZMM(8)) MOV(RAX, VAR(a)) //load address of a VMOVAPS(ZMM(12), ZMM(8)) MOV(RBX, VAR(b)) //load address of b VMOVAPS(ZMM(13), ZMM(8)) MOV(RCX, VAR(c)) //load address of c VMOVAPS(ZMM(14), ZMM(8)) VMOVAPD(ZMM(0), MEM(RBX)) //pre-load b VMOVAPS(ZMM(15), ZMM(8)) MOV(RDI, VAR(offsetPtr)) VMOVAPS(ZMM(16), ZMM(8)) VMOVAPS(ZMM(4), MEM(RDI)) #if SCATTER_PREFETCH_C VMOVAPS(ZMM(17), ZMM(8)) VMOVAPS(ZMM(18), ZMM(8)) VMOVAPS(ZMM(19), ZMM(8)) VBROADCASTSS(ZMM(5), VAR(rs_c)) VMOVAPS(ZMM(20), ZMM(8)) VMOVAPS(ZMM(21), ZMM(8)) VPMULLD(ZMM(2), ZMM(4), ZMM(5)) VMOVAPS(ZMM(22), ZMM(8)) VMOVAPS(YMM(3), MEM(RDI,64)) VMOVAPS(ZMM(23), ZMM(8)) VPMULLD(YMM(3), YMM(3), YMM(5)) #else VMOVAPS(ZMM(17), ZMM(8)) VMOVAPS(ZMM(18), ZMM(8)) LEA(R13, MEM(R12,R12,2)) VMOVAPS(ZMM(19), ZMM(8)) LEA(R14, MEM(R12,R12,4)) VMOVAPS(ZMM(20), ZMM(8)) LEA(R15, MEM(R13,R12,4)) VMOVAPS(ZMM(21), ZMM(8)) VMOVAPS(ZMM(22), ZMM(8)) VMOVAPS(ZMM(23), ZMM(8)) #endif VMOVAPS(ZMM(24), ZMM(8)) VPSLLD(ZMM(4), ZMM(4), IMM(3)) VMOVAPS(ZMM(25), ZMM(8)) MOV(R8, IMM(4*24*8)) //offset for 4 iterations VMOVAPS(ZMM(26), ZMM(8)) LEA(R9, MEM(R8,R8,2)) //*3 VMOVAPS(ZMM(27), ZMM(8)) LEA(R10, MEM(R8,R8,4)) //*5 VMOVAPS(ZMM(28), ZMM(8)) LEA(R11, MEM(R9,R8,4)) //*7 VMOVAPS(ZMM(29), ZMM(8)) VMOVAPS(ZMM(30), ZMM(8)) VMOVAPS(ZMM(31), ZMM(8)) #ifdef MONITORS RDTSC MOV(VAR(midl), EAX) MOV(VAR(midh), EDX) #endif SUB(RSI, IMM(32)) JLE(TAIL) //prefetch C into L2 #if SCATTER_PREFETCH_C ADD(RSI, IMM(24)) KXNORW(K(1), K(0), K(0)) KXNORW(K(2), K(0), K(0)) VSCATTERPFDPS(1, MEM(RCX,ZMM(2),8) MASK_K(1)) VSCATTERPFDPD(1, MEM(RCX,YMM(3),8) MASK_K(2)) #else PREFETCHW1(MEM(RCX )) SUBITER( 0,1,0,RAX ) PREFETCHW1(MEM(RCX,R12,1)) SUBITER( 1,0,1,RAX ) PREFETCHW1(MEM(RCX,R12,2)) SUBITER( 2,1,0,RAX ) PREFETCHW1(MEM(RCX,R13,1)) SUBITER( 3,0,1,RAX ) PREFETCHW1(MEM(RCX,R12,4)) SUBITER( 4,1,0,RAX,R8, 1) PREFETCHW1(MEM(RCX,R14,1)) SUBITER( 5,0,1,RAX,R8, 1) PREFETCHW1(MEM(RCX,R13,2)) SUBITER( 6,1,0,RAX,R8, 1) PREFETCHW1(MEM(RCX,R15,1)) SUBITER( 7,0,1,RAX,R8, 1) LEA(RDX, MEM(RCX,R12,8)) PREFETCHW1(MEM(RDX )) SUBITER( 8,1,0,RAX,R8, 2) PREFETCHW1(MEM(RDX,R12,1)) SUBITER( 9,0,1,RAX,R8, 2) PREFETCHW1(MEM(RDX,R12,2)) SUBITER(10,1,0,RAX,R8, 2) PREFETCHW1(MEM(RDX,R13,1)) SUBITER(11,0,1,RAX,R8, 2) PREFETCHW1(MEM(RDX,R12,4)) SUBITER(12,1,0,RAX,R9, 1) PREFETCHW1(MEM(RDX,R14,1)) SUBITER(13,0,1,RAX,R9, 1) PREFETCHW1(MEM(RDX,R13,2)) SUBITER(14,1,0,RAX,R9, 1) PREFETCHW1(MEM(RDX,R15,1)) SUBITER(15,0,1,RAX,R9, 1) LEA(RDI, MEM(RDX,R12,8)) PREFETCHW1(MEM(RDI )) SUBITER(16,1,0,RAX,R8, 4) PREFETCHW1(MEM(RDI,R12,1)) SUBITER(17,0,1,RAX,R8, 4) PREFETCHW1(MEM(RDI,R12,2)) SUBITER(18,1,0,RAX,R8, 4) PREFETCHW1(MEM(RDI,R13,1)) SUBITER(19,0,1,RAX,R8, 4) PREFETCHW1(MEM(RDI,R12,4)) SUBITER(20,1,0,RAX,R10,1) PREFETCHW1(MEM(RDI,R14,1)) SUBITER(21,0,1,RAX,R10,1) PREFETCHW1(MEM(RDI,R13,2)) SUBITER(22,1,0,RAX,R10,1) PREFETCHW1(MEM(RDI,R15,1)) SUBITER(23,0,1,RAX,R10,1) ADD(RAX, IMM(24*24*8)) ADD(RBX, IMM(24* 8*8)) #endif MOV(RDI, RSI) AND(RDI, IMM(31)) SAR(RSI, IMM(5)) JZ(REM_1) LOOP_ALIGN LABEL(MAIN_LOOP) SUBITER( 0,1,0,RAX ) SUBITER( 1,0,1,RAX ) SUBITER( 2,1,0,RAX ) SUBITER( 3,0,1,RAX ) SUBITER( 4,1,0,RAX,R8, 1) SUBITER( 5,0,1,RAX,R8, 1) SUBITER( 6,1,0,RAX,R8, 1) SUBITER( 7,0,1,RAX,R8, 1) SUBITER( 8,1,0,RAX,R8, 2) SUBITER( 9,0,1,RAX,R8, 2) SUBITER(10,1,0,RAX,R8, 2) SUBITER(11,0,1,RAX,R8, 2) SUBITER(12,1,0,RAX,R9, 1) SUBITER(13,0,1,RAX,R9, 1) SUBITER(14,1,0,RAX,R9, 1) SUBITER(15,0,1,RAX,R9, 1) SUBITER(16,1,0,RAX,R8, 4) SUBITER(17,0,1,RAX,R8, 4) SUBITER(18,1,0,RAX,R8, 4) SUBITER(19,0,1,RAX,R8, 4) SUBITER(20,1,0,RAX,R10,1) SUBITER(21,0,1,RAX,R10,1) SUBITER(22,1,0,RAX,R10,1) SUBITER(23,0,1,RAX,R10,1) SUBITER(24,1,0,RAX,R9, 2) SUBITER(25,0,1,RAX,R9, 2) SUBITER(26,1,0,RAX,R9, 2) SUBITER(27,0,1,RAX,R9, 2) SUBITER(28,1,0,RAX,R11,1) SUBITER(29,0,1,RAX,R11,1) SUBITER(30,1,0,RAX,R11,1) SUBITER(31,0,1,RAX,R11,1) ADD(RAX, IMM(32*24*8)) ADD(RBX, IMM(32* 8*8)) SUB(RSI, IMM(1)) JNZ(MAIN_LOOP) LABEL(REM_1) SAR(RDI) JNC(REM_2) SUBITER(0,1,0,RAX) VMOVAPD(ZMM(0), ZMM(1)) ADD(RAX, IMM(24*8)) ADD(RBX, IMM( 8*8)) LABEL(REM_2) SAR(RDI) JNC(REM_4) SUBITER(0,1,0,RAX) SUBITER(1,0,1,RAX) ADD(RAX, IMM(2*24*8)) ADD(RBX, IMM(2* 8*8)) LABEL(REM_4) SAR(RDI) JNC(REM_8) SUBITER(0,1,0,RAX) SUBITER(1,0,1,RAX) SUBITER(2,1,0,RAX) SUBITER(3,0,1,RAX) ADD(RAX, IMM(4*24*8)) ADD(RBX, IMM(4* 8*8)) LABEL(REM_8) SAR(RDI) JNC(REM_16) SUBITER(0,1,0,RAX ) SUBITER(1,0,1,RAX ) SUBITER(2,1,0,RAX ) SUBITER(3,0,1,RAX ) SUBITER(4,1,0,RAX,R8,1) SUBITER(5,0,1,RAX,R8,1) SUBITER(6,1,0,RAX,R8,1) SUBITER(7,0,1,RAX,R8,1) ADD(RAX, IMM(8*24*8)) ADD(RBX, IMM(8* 8*8)) LABEL(REM_16) SAR(RDI) JNC(AFTER_LOOP) SUBITER( 0,1,0,RAX ) SUBITER( 1,0,1,RAX ) SUBITER( 2,1,0,RAX ) SUBITER( 3,0,1,RAX ) SUBITER( 4,1,0,RAX,R8, 1) SUBITER( 5,0,1,RAX,R8, 1) SUBITER( 6,1,0,RAX,R8, 1) SUBITER( 7,0,1,RAX,R8, 1) SUBITER( 8,1,0,RAX,R8, 2) SUBITER( 9,0,1,RAX,R8, 2) SUBITER(10,1,0,RAX,R8, 2) SUBITER(11,0,1,RAX,R8, 2) SUBITER(12,1,0,RAX,R9, 1) SUBITER(13,0,1,RAX,R9, 1) SUBITER(14,1,0,RAX,R9, 1) SUBITER(15,0,1,RAX,R9, 1) ADD(RAX, IMM(16*24*8)) ADD(RBX, IMM(16* 8*8)) LABEL(AFTER_LOOP) //prefetch C into L1 #if SCATTER_PREFETCH_C KXNORW(K(1), K(0), K(0)) KXNORW(K(2), K(0), K(0)) VSCATTERPFDPS(0, MEM(RCX,ZMM(2),8) MASK_K(1)) VSCATTERPFDPD(0, MEM(RCX,YMM(3),8) MASK_K(2)) SUBITER(0,1,0,RAX ) SUBITER(1,0,1,RAX ) SUBITER(2,1,0,RAX ) SUBITER(3,0,1,RAX ) SUBITER(4,1,0,RAX,R8,1) SUBITER(5,0,1,RAX,R8,1) SUBITER(6,1,0,RAX,R8,1) SUBITER(7,0,1,RAX,R8,1) #else LEA(RDX, MEM(RCX,R12,8)) LEA(RDI, MEM(RDX,R12,8)) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RCX )) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RCX,R12,1)) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RCX,R12,2)) SUBITER(0,1,0,RAX ) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RCX,R13,1)) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RCX,R12,4)) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RCX,R14,1)) SUBITER(1,0,1,RAX ) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RCX,R13,2)) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RCX,R15,1)) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDX )) SUBITER(2,1,0,RAX ) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDX,R12,1)) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDX,R12,2)) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDX,R13,1)) SUBITER(3,0,1,RAX ) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDX,R12,4)) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDX,R14,1)) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDX,R13,2)) SUBITER(4,1,0,RAX,R8,1) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDX,R15,1)) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDI )) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDI,R12,1)) SUBITER(5,0,1,RAX,R8,1) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDI,R12,2)) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDI,R13,1)) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDI,R12,4)) SUBITER(6,1,0,RAX,R8,1) #undef PREFETCH_C_L1_1 #undef PREFETCH_C_L1_2 #undef PREFETCH_C_L1_3 #define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDI,R14,1)) #define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDI,R13,2)) #define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDI,R15,1)) SUBITER(7,0,1,RAX,R8,1) #endif JMP(POSTACCUM) LABEL(TAIL) MOV(RDX, RCX) ADD(RSI, IMM(32)) JZ(POSTACCUM) LABEL(TAIL_LOOP) PREFETCHW0(MEM(RDX)) ADD(RDX, R12) SUBITER(0,1,0,RAX) VMOVAPD(ZMM(0), ZMM(1)) ADD(RAX, IMM(24*8)) ADD(RBX, IMM( 8*8)) SUB(RSI, IMM(1)) JNZ(TAIL_LOOP) LABEL(POSTACCUM) #ifdef MONITORS RDTSC MOV(VAR(mid2l), EAX) MOV(VAR(mid2h), EDX) #endif MOV(RAX, VAR(alpha)) MOV(RBX, VAR(beta)) VBROADCASTSD(ZMM(0), MEM(RAX)) VBROADCASTSD(ZMM(1), MEM(RBX)) // Check if C is row stride. If not, jump to the slow scattered update MOV(RAX, VAR(rs_c)) LEA(RAX, MEM(,RAX,8)) LEA(RDI, MEM(RAX,RAX,2)) VMOVQ(RDX, XMM(1)) SAL(RDX) //shift out sign bit JZ(COLSTORBZ) UPDATE_C_FOUR_ROWS( 8, 9,10,11) UPDATE_C_FOUR_ROWS(12,13,14,15) UPDATE_C_FOUR_ROWS(16,17,18,19) UPDATE_C_FOUR_ROWS(20,21,22,23) UPDATE_C_FOUR_ROWS(24,25,26,27) UPDATE_C_FOUR_ROWS(28,29,30,31) JMP(END) LABEL(COLSTORBZ) UPDATE_C_BZ_FOUR_ROWS( 8, 9,10,11) UPDATE_C_BZ_FOUR_ROWS(12,13,14,15) UPDATE_C_BZ_FOUR_ROWS(16,17,18,19) UPDATE_C_BZ_FOUR_ROWS(20,21,22,23) UPDATE_C_BZ_FOUR_ROWS(24,25,26,27) UPDATE_C_BZ_FOUR_ROWS(28,29,30,31) LABEL(END) #ifdef MONITORS RDTSC MOV(VAR(botl), EAX) MOV(VAR(both), EDX) #endif END_ASM( : // output operands #ifdef MONITORS [topl] "=m" (topl), [toph] "=m" (toph), [midl] "=m" (midl), [midh] "=m" (midh), [mid2l] "=m" (mid2l), [mid2h] "=m" (mid2h), [botl] "=m" (botl), [both] "=m" (both) #endif : // input operands [k] "m" (k), [a] "m" (a), [b] "m" (b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c), [a_next] "m" (a_next), [b_next] "m" (b_next), [offsetPtr] "m" (offsetPtr) : // register clobber list "rax", "rbx", "rcx", "rdx", "rdi", "rsi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15", "zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31", "memory" ) GEMM_UKR_FLUSH_CT( d ); #ifdef LOOPMON printf("looptime = \t%d\n", bloopl - tloopl); #endif #ifdef MONITORS dim_t top = ((dim_t)toph << 32) | topl; dim_t mid = ((dim_t)midh << 32) | midl; dim_t mid2 = ((dim_t)mid2h << 32) | mid2l; dim_t bot = ((dim_t)both << 32) | botl; printf("setup =\t%u\tmain loop =\t%u\tcleanup=\t%u\ttotal=\t%u\n", mid - top, mid2 - mid, bot - mid2, bot - top); #endif }