/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "pmmintrin.h" #include "blis.h" typedef union { __m128d v; double d[2]; } v2df_t; void bli_ddotxf_penryn_int ( conj_t conjat, conj_t conjx, dim_t m, dim_t b_n, const void* alpha, const void* a, inc_t inca, inc_t lda, const void* x, inc_t incx, const void* beta, void* y, inc_t incy, const cntx_t* cntx ) { const double* restrict alpha_cast = alpha; const double* restrict a_cast = a; const double* restrict x_cast = x; const double* restrict beta_cast = beta; double* restrict y_cast = y; const dim_t n_elem_per_reg = 2; const dim_t n_iter_unroll = 4; dim_t m_pre; dim_t m_run; dim_t m_left; double rho0, rho1, rho2, rho3; double x0c, x1c, x2c, x3c, y0c; v2df_t rho0v, rho1v, rho2v, rho3v; v2df_t x0v, x1v, x2v, x3v, y0v, betav, alphav; bool use_ref = FALSE; if ( bli_zero_dim1( b_n ) ) return; // If the vector lengths are zero, scale r by beta and return. if ( bli_zero_dim1( m ) ) { scalv_ker_ft f = bli_cntx_get_ukr_dt( BLIS_DOUBLE, BLIS_SCALV_KER, cntx ); f ( BLIS_NO_CONJUGATE, b_n, beta_cast, y_cast, incy, cntx ); return; } m_pre = 0; // If there is anything that would interfere with our use of aligned // vector loads/stores, call the reference implementation. if ( b_n < bli_cntx_get_blksz_def_dt( BLIS_DOUBLE, BLIS_DF, cntx ) ) { use_ref = TRUE; } else if ( inca != 1 || incx != 1 || incy != 1 || bli_is_unaligned_to( ( siz_t )(lda*sizeof(double)), 16 ) ) { use_ref = TRUE; } else if ( bli_is_unaligned_to( ( siz_t )a, 16 ) || bli_is_unaligned_to( ( siz_t )x, 16 ) || bli_is_unaligned_to( ( siz_t )y, 16 ) ) { use_ref = TRUE; if ( bli_is_unaligned_to( ( siz_t )a, 16 ) && bli_is_unaligned_to( ( siz_t )x, 16 ) && bli_is_aligned_to( ( siz_t )y, 16 ) ) // Note: r is not affected by x and y being unaligned. { use_ref = FALSE; m_pre = 1; } } // Call the reference implementation if needed. if ( use_ref == TRUE ) { #if 0 dotxf_ker_ft f = bli_cntx_get_ukr_dt( BLIS_DOUBLE, BLIS_DOTXF_KER, cntx ); f ( conjat, conjx, m, b_n, alpha_cast, a_cast, inca, lda, x_cast, incx, beta_cast, y_cast, incy, cntx ); #endif bli_abort(); return; } m_run = ( m - m_pre ) / ( n_elem_per_reg * n_iter_unroll ); m_left = ( m - m_pre ) % ( n_elem_per_reg * n_iter_unroll ); const double* restrict x0 = a_cast; const double* restrict x1 = a_cast + lda; const double* restrict x2 = a_cast + 2*lda; const double* restrict x3 = a_cast + 3*lda; const double* restrict y0 = x_cast; PASTEMAC(d,set0s)( rho0 ); PASTEMAC(d,set0s)( rho1 ); PASTEMAC(d,set0s)( rho2 ); PASTEMAC(d,set0s)( rho3 ); if ( m_pre == 1 ) { x0c = *x0; x1c = *x1; x2c = *x2; x3c = *x3; y0c = *y0; rho0 += x0c * y0c; rho1 += x1c * y0c; rho2 += x2c * y0c; rho3 += x3c * y0c; x0 += inca; x1 += inca; x2 += inca; x3 += inca; y0 += incx; } rho0v.v = _mm_setzero_pd(); rho1v.v = _mm_setzero_pd(); rho2v.v = _mm_setzero_pd(); rho3v.v = _mm_setzero_pd(); for ( dim_t i = 0; i < m_run; ++i ) { x0v.v = _mm_load_pd( ( double* )(x0 + 0*n_elem_per_reg) ); x1v.v = _mm_load_pd( ( double* )(x1 + 0*n_elem_per_reg) ); x2v.v = _mm_load_pd( ( double* )(x2 + 0*n_elem_per_reg) ); x3v.v = _mm_load_pd( ( double* )(x3 + 0*n_elem_per_reg) ); y0v.v = _mm_load_pd( ( double* )(y0 + 0*n_elem_per_reg) ); rho0v.v += x0v.v * y0v.v; rho1v.v += x1v.v * y0v.v; rho2v.v += x2v.v * y0v.v; rho3v.v += x3v.v * y0v.v; x0v.v = _mm_load_pd( ( double* )(x0 + 1*n_elem_per_reg) ); x1v.v = _mm_load_pd( ( double* )(x1 + 1*n_elem_per_reg) ); x2v.v = _mm_load_pd( ( double* )(x2 + 1*n_elem_per_reg) ); x3v.v = _mm_load_pd( ( double* )(x3 + 1*n_elem_per_reg) ); y0v.v = _mm_load_pd( ( double* )(y0 + 1*n_elem_per_reg) ); rho0v.v += x0v.v * y0v.v; rho1v.v += x1v.v * y0v.v; rho2v.v += x2v.v * y0v.v; rho3v.v += x3v.v * y0v.v; x0v.v = _mm_load_pd( ( double* )(x0 + 2*n_elem_per_reg) ); x1v.v = _mm_load_pd( ( double* )(x1 + 2*n_elem_per_reg) ); x2v.v = _mm_load_pd( ( double* )(x2 + 2*n_elem_per_reg) ); x3v.v = _mm_load_pd( ( double* )(x3 + 2*n_elem_per_reg) ); y0v.v = _mm_load_pd( ( double* )(y0 + 2*n_elem_per_reg) ); rho0v.v += x0v.v * y0v.v; rho1v.v += x1v.v * y0v.v; rho2v.v += x2v.v * y0v.v; rho3v.v += x3v.v * y0v.v; x0v.v = _mm_load_pd( ( double* )(x0 + 3*n_elem_per_reg) ); x1v.v = _mm_load_pd( ( double* )(x1 + 3*n_elem_per_reg) ); x2v.v = _mm_load_pd( ( double* )(x2 + 3*n_elem_per_reg) ); x3v.v = _mm_load_pd( ( double* )(x3 + 3*n_elem_per_reg) ); y0v.v = _mm_load_pd( ( double* )(y0 + 3*n_elem_per_reg) ); rho0v.v += x0v.v * y0v.v; rho1v.v += x1v.v * y0v.v; rho2v.v += x2v.v * y0v.v; rho3v.v += x3v.v * y0v.v; x0 += n_elem_per_reg * n_iter_unroll; x1 += n_elem_per_reg * n_iter_unroll; x2 += n_elem_per_reg * n_iter_unroll; x3 += n_elem_per_reg * n_iter_unroll; y0 += n_elem_per_reg * n_iter_unroll; } rho0 += rho0v.d[0] + rho0v.d[1]; rho1 += rho1v.d[0] + rho1v.d[1]; rho2 += rho2v.d[0] + rho2v.d[1]; rho3 += rho3v.d[0] + rho3v.d[1]; if ( m_left > 0 ) { for ( dim_t i = 0; i < m_left; ++i ) { x0c = *x0; x1c = *x1; x2c = *x2; x3c = *x3; y0c = *y0; rho0 += x0c * y0c; rho1 += x1c * y0c; rho2 += x2c * y0c; rho3 += x3c * y0c; x0 += inca; x1 += inca; x2 += inca; x3 += inca; y0 += incx; } } /* PASTEMAC2(d,d,scals)( *beta_cast, *(y_cast ) ); \ PASTEMAC2(d,d,scals)( *beta_cast, *(y_cast+1) ); \ PASTEMAC2(d,d,scals)( *beta_cast, *(y_cast+2) ); \ PASTEMAC2(d,d,scals)( *beta_cast, *(y_cast+3) ); \ PASTEMAC3(d,d,d,axpys)( *alpha_cast, rho1, *(y_cast ) ); \ PASTEMAC3(d,d,d,axpys)( *alpha_cast, rho2, *(y_cast+1) ); \ PASTEMAC3(d,d,d,axpys)( *alpha_cast, rho3, *(y_cast+2) ); \ PASTEMAC3(d,d,d,axpys)( *alpha_cast, rho4, *(y_cast+3) ); \ */ rho1v.d[0] = rho0; rho1v.d[1] = rho1; rho3v.d[0] = rho2; rho3v.d[1] = rho3; betav.v = _mm_loaddup_pd( ( double* ) beta_cast ); alphav.v = _mm_loaddup_pd( ( double* ) alpha_cast ); rho0v.v = _mm_load_pd( ( double* )(y_cast + 0*n_elem_per_reg) ); rho2v.v = _mm_load_pd( ( double* )(y_cast + 1*n_elem_per_reg) ); rho0v.v *= betav.v; rho2v.v *= betav.v; rho0v.v += alphav.v * rho1v.v; rho2v.v += alphav.v * rho3v.v; _mm_store_pd( ( double* )(y_cast + 0*n_elem_per_reg), rho0v.v ); _mm_store_pd( ( double* )(y_cast + 1*n_elem_per_reg), rho2v.v ); }