/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2023, SiFive, Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #include #include #include #include #define FLT_SIZE 4 #define FLT_LOAD "flw " #define FDIV "fdiv.s " #define VLE "vle32.v " #define VLSE "vlse32.v " #define VSE "vse32.v " #define VSSE "vsse32.v " void bli_sinvscalv_sifive_x280_asm(conj_t conjalpha, dim_t n, const void * restrict alpha_, void * restrict x_, inc_t incx, const cntx_t *cntx) { (void)conjalpha; (void)cntx; const float* restrict alpha = alpha_; float* restrict x = x_; if (n <= 0 || *alpha == 0.f || *alpha == 1.f) return; float one = 1.f; __asm__(FLT_LOAD "f0, (%0)" : : "r"(&one)); __asm__(FLT_LOAD "f1, (%0)" : : "r"(alpha)); __asm__(FDIV "f0, f0, f1"); incx *= FLT_SIZE; size_t avl = n; while (avl) { size_t vl; __asm__ volatile("vsetvli %0, %1, e%2, m8, ta, ma" : "=r"(vl) : "r"(avl), "i"(8 * FLT_SIZE)); if (incx == FLT_SIZE) { __asm__(VLE "v0, (%0)" : : "r"(x)); __asm__("vfmul.vf v0, v0, f0"); __asm__(VSE "v0, (%0)" : : "r"(x)); } else { __asm__(VLSE "v0, (%0), %1" : : "r"(x), "r"(incx)); __asm__("vfmul.vf v0, v0, f0"); __asm__(VSSE "v0, (%0), %1" : : "r"(x), "r"(incx)); } __asm__("add %0, %0, %1" : "+r"(x) : "r"(vl * incx)); avl -= vl; } return; } #undef FLT_SIZE #undef FLT_LOAD #undef FDIV #undef VLE #undef VLSE #undef VSE #undef VSSE #define FLT_SIZE 8 #define FLT_LOAD "fld " #define FDIV "fdiv.d " #define VLE "vle64.v " #define VLSE "vlse64.v " #define VSE "vse64.v " #define VSSE "vsse64.v " void bli_dinvscalv_sifive_x280_asm(conj_t conjalpha, dim_t n, const void * restrict alpha_, void * restrict x_, inc_t incx, const cntx_t *cntx) { (void)conjalpha; (void)cntx; const double* restrict alpha = alpha_; double* restrict x = x_; if (n <= 0 || *alpha == 0. || *alpha == 1.) return; double one = 1.; __asm__(FLT_LOAD "f0, (%0)" : : "r"(&one)); __asm__(FLT_LOAD "f1, (%0)" : : "r"(alpha)); __asm__(FDIV "f0, f0, f1"); incx *= FLT_SIZE; size_t avl = n; while (avl) { size_t vl; __asm__ volatile("vsetvli %0, %1, e%2, m8, ta, ma" : "=r"(vl) : "r"(avl), "i"(8 * FLT_SIZE)); if (incx == FLT_SIZE) { __asm__(VLE "v0, (%0)" : : "r"(x)); __asm__("vfmul.vf v0, v0, f0"); __asm__(VSE "v0, (%0)" : : "r"(x)); } else { __asm__(VLSE "v0, (%0), %1" : : "r"(x), "r"(incx)); __asm__("vfmul.vf v0, v0, f0"); __asm__(VSSE "v0, (%0), %1" : : "r"(x), "r"(incx)); } __asm__("add %0, %0, %1" : "+r"(x) : "r"(vl * incx)); avl -= vl; } return; } #undef FLT_SIZE #undef FLT_LOAD #undef FDIV #undef VLE #undef VLSE #undef VSE #undef VSSE #define FLT_SIZE 4 #define FLT_LOAD "flw " #define FMUL "fmul.s " #define FMADD "fmadd.s " #define FDIV "fdiv.s " #define FNEG "fneg.s " #define VLSEG2 "vlseg2e32.v " #define VLSSEG2 "vlsseg2e32.v " #define VSSEG2 "vsseg2e32.v " #define VSSSEG2 "vssseg2e32.v " void bli_cinvscalv_sifive_x280_asm(conj_t conjalpha, dim_t n, const void * restrict alpha_, void * restrict x_, inc_t incx, const cntx_t *cntx) { (void)cntx; const scomplex* restrict alpha = alpha_; scomplex* restrict x = x_; if (n <= 0 || (alpha->real == 0.f && alpha->imag == 0.f) || (alpha->real == 1.f && alpha->imag == 0.f)) return; __asm__(FLT_LOAD "f0, (%0)" : : "r"(alpha)); __asm__(FLT_LOAD "f1, %1(%0)" : : "r"(alpha), "I"(FLT_SIZE)); __asm__(FMUL "f2, f0, f0"); __asm__(FMADD "f2, f1, f1, f2"); __asm__(FDIV "f0, f0, f2"); __asm__(FDIV "f1, f1, f2"); if (conjalpha == BLIS_NO_CONJUGATE) __asm__(FNEG "f1, f1"); incx *= 2 * FLT_SIZE; size_t avl = n; while (avl) { size_t vl; __asm__ volatile("vsetvli %0, %1, e%2, m4, ta, ma" : "=r"(vl) : "r"(avl), "i"(8 * FLT_SIZE)); if (incx == 2 * FLT_SIZE) { __asm__(VLSEG2 "v0, (%0)" : : "r"(x)); __asm__("vfmul.vf v8, v0, f0"); __asm__("vfmul.vf v12, v4, f0"); __asm__("vfnmsac.vf v8, f1, v4"); __asm__("vfmacc.vf v12, f1, v0"); __asm__(VSSEG2 "v8, (%0)" : : "r"(x)); } else { __asm__(VLSSEG2 "v0, (%0), %1" : : "r"(x), "r"(incx)); __asm__("vfmul.vf v8, v0, f0"); __asm__("vfmul.vf v12, v4, f0"); __asm__("vfnmsac.vf v8, f1, v4"); __asm__("vfmacc.vf v12, f1, v0"); __asm__(VSSSEG2 "v8, (%0), %1" : : "r"(x), "r"(incx)); } __asm__("add %0, %0, %1" : "+r"(x) : "r"(vl * incx)); avl -= vl; } return; } #undef FLT_SIZE #undef FLT_LOAD #undef FMUL #undef FMADD #undef FDIV #undef FNEG #undef VLSEG2 #undef VLSSEG2 #undef VSSEG2 #undef VSSSEG2 #define FLT_SIZE 8 #define FLT_LOAD "fld " #define FMUL "fmul.d " #define FMADD "fmadd.d " #define FDIV "fdiv.d " #define FNEG "fneg.d " #define VLSEG2 "vlseg2e64.v " #define VLSSEG2 "vlsseg2e64.v " #define VSSEG2 "vsseg2e64.v " #define VSSSEG2 "vssseg2e64.v " void bli_zinvscalv_sifive_x280_asm(conj_t conjalpha, dim_t n, const void * restrict alpha_, void * restrict x_, inc_t incx, const cntx_t *cntx) { (void)cntx; const dcomplex* restrict alpha = alpha_; dcomplex* restrict x = x_; if (n <= 0 || (alpha->real == 0. && alpha->imag == 0.) || (alpha->real == 1. && alpha->imag == 0.)) return; __asm__(FLT_LOAD "f0, (%0)" : : "r"(alpha)); __asm__(FLT_LOAD "f1, %1(%0)" : : "r"(alpha), "I"(FLT_SIZE)); __asm__(FMUL "f2, f0, f0"); __asm__(FMADD "f2, f1, f1, f2"); __asm__(FDIV "f0, f0, f2"); __asm__(FDIV "f1, f1, f2"); if (conjalpha == BLIS_NO_CONJUGATE) __asm__(FNEG "f1, f1"); incx *= 2 * FLT_SIZE; size_t avl = n; while (avl) { size_t vl; __asm__ volatile("vsetvli %0, %1, e%2, m4, ta, ma" : "=r"(vl) : "r"(avl), "i"(8 * FLT_SIZE)); if (incx == 2 * FLT_SIZE) { __asm__(VLSEG2 "v0, (%0)" : : "r"(x)); __asm__("vfmul.vf v8, v0, f0"); __asm__("vfmul.vf v12, v4, f0"); __asm__("vfnmsac.vf v8, f1, v4"); __asm__("vfmacc.vf v12, f1, v0"); __asm__(VSSEG2 "v8, (%0)" : : "r"(x)); } else { __asm__(VLSSEG2 "v0, (%0), %1" : : "r"(x), "r"(incx)); __asm__("vfmul.vf v8, v0, f0"); __asm__("vfmul.vf v12, v4, f0"); __asm__("vfnmsac.vf v8, f1, v4"); __asm__("vfmacc.vf v12, f1, v0"); __asm__(VSSSEG2 "v8, (%0), %1" : : "r"(x), "r"(incx)); } __asm__("add %0, %0, %1" : "+r"(x) : "r"(vl * incx)); avl -= vl; } return; }