/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2017 - 2022, Advanced Micro Devices, Inc. Copyright (C) 2018, The University of Texas at Austin Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "immintrin.h" #include "blis.h" /* Union data structure to access AVX registers One 256-bit AVX register holds 8 SP elements. */ typedef union { __m256 v; float f[8] __attribute__((aligned(64))); } v8sf_t; /* Union data structure to access AVX registers * One 256-bit AVX register holds 4 DP elements. */ typedef union { __m256d v; double d[4] __attribute__((aligned(64))); } v4df_t; // ----------------------------------------------------------------------------- void bli_sscalv_zen_int10 ( conj_t conjalpha, dim_t n, const void* alpha0, void* x0, inc_t incx, const cntx_t* cntx ) { const float* alpha = alpha0; float* x = x0; const dim_t n_elem_per_reg = 8; dim_t i; float* restrict xp; __m256 alphav; __m256 xv[10]; __m256 zv[10]; // If the vector dimension is zero, or if alpha is unit, return early. if ( bli_zero_dim1( n ) || PASTEMAC(s,eq1)( *alpha ) ) return; // If alpha is zero, use setv. if ( PASTEMAC(s,eq0)( *alpha ) ) { if ( cntx == NULL ) cntx = ( cntx_t* )bli_gks_query_cntx(); void* zero = bli_s0; setv_ker_ft f = bli_cntx_get_ukr_dt( BLIS_FLOAT, BLIS_SETV_KER, cntx ); f ( BLIS_NO_CONJUGATE, n, zero, x, incx, cntx ); return; } // Initialize local pointers. xp = x; if ( incx == 1 ) { // Broadcast the alpha scalar to all elements of a vector register. alphav = _mm256_broadcast_ss( alpha ); for ( i = 0; (i + 79) < n; i += 80 ) { // Load the input values. xv[0] = _mm256_loadu_ps( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_ps( xp + 1*n_elem_per_reg ); xv[2] = _mm256_loadu_ps( xp + 2*n_elem_per_reg ); xv[3] = _mm256_loadu_ps( xp + 3*n_elem_per_reg ); xv[4] = _mm256_loadu_ps( xp + 4*n_elem_per_reg ); xv[5] = _mm256_loadu_ps( xp + 5*n_elem_per_reg ); xv[6] = _mm256_loadu_ps( xp + 6*n_elem_per_reg ); xv[7] = _mm256_loadu_ps( xp + 7*n_elem_per_reg ); xv[8] = _mm256_loadu_ps( xp + 8*n_elem_per_reg ); xv[9] = _mm256_loadu_ps( xp + 9*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_ps( alphav, xv[0] ); zv[1] = _mm256_mul_ps( alphav, xv[1] ); zv[2] = _mm256_mul_ps( alphav, xv[2] ); zv[3] = _mm256_mul_ps( alphav, xv[3] ); zv[4] = _mm256_mul_ps( alphav, xv[4] ); zv[5] = _mm256_mul_ps( alphav, xv[5] ); zv[6] = _mm256_mul_ps( alphav, xv[6] ); zv[7] = _mm256_mul_ps( alphav, xv[7] ); zv[8] = _mm256_mul_ps( alphav, xv[8] ); zv[9] = _mm256_mul_ps( alphav, xv[9] ); // Store the output. _mm256_storeu_ps( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_ps( (xp + 1*n_elem_per_reg), zv[1] ); _mm256_storeu_ps( (xp + 2*n_elem_per_reg), zv[2] ); _mm256_storeu_ps( (xp + 3*n_elem_per_reg), zv[3] ); _mm256_storeu_ps( (xp + 4*n_elem_per_reg), zv[4] ); _mm256_storeu_ps( (xp + 5*n_elem_per_reg), zv[5] ); _mm256_storeu_ps( (xp + 6*n_elem_per_reg), zv[6] ); _mm256_storeu_ps( (xp + 7*n_elem_per_reg), zv[7] ); _mm256_storeu_ps( (xp + 8*n_elem_per_reg), zv[8] ); _mm256_storeu_ps( (xp + 9*n_elem_per_reg), zv[9] ); xp += 10*n_elem_per_reg; } for ( ; (i + 39) < n; i += 40 ) { // Load the input values. xv[0] = _mm256_loadu_ps( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_ps( xp + 1*n_elem_per_reg ); xv[2] = _mm256_loadu_ps( xp + 2*n_elem_per_reg ); xv[3] = _mm256_loadu_ps( xp + 3*n_elem_per_reg ); xv[4] = _mm256_loadu_ps( xp + 4*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_ps( alphav, xv[0] ); zv[1] = _mm256_mul_ps( alphav, xv[1] ); zv[2] = _mm256_mul_ps( alphav, xv[2] ); zv[3] = _mm256_mul_ps( alphav, xv[3] ); zv[4] = _mm256_mul_ps( alphav, xv[4] ); // Store the output. _mm256_storeu_ps( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_ps( (xp + 1*n_elem_per_reg), zv[1] ); _mm256_storeu_ps( (xp + 2*n_elem_per_reg), zv[2] ); _mm256_storeu_ps( (xp + 3*n_elem_per_reg), zv[3] ); _mm256_storeu_ps( (xp + 4*n_elem_per_reg), zv[4] ); xp += 5*n_elem_per_reg; } for ( ; (i + 31) < n; i += 32 ) { // Load the input values. xv[0] = _mm256_loadu_ps( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_ps( xp + 1*n_elem_per_reg ); xv[2] = _mm256_loadu_ps( xp + 2*n_elem_per_reg ); xv[3] = _mm256_loadu_ps( xp + 3*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_ps( alphav, xv[0] ); zv[1] = _mm256_mul_ps( alphav, xv[1] ); zv[2] = _mm256_mul_ps( alphav, xv[2] ); zv[3] = _mm256_mul_ps( alphav, xv[3] ); // Store the output. _mm256_storeu_ps( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_ps( (xp + 1*n_elem_per_reg), zv[1] ); _mm256_storeu_ps( (xp + 2*n_elem_per_reg), zv[2] ); _mm256_storeu_ps( (xp + 3*n_elem_per_reg), zv[3] ); xp += 4*n_elem_per_reg; } for ( ; (i + 15) < n; i += 16 ) { // Load the input values. xv[0] = _mm256_loadu_ps( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_ps( xp + 1*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_ps( alphav, xv[0] ); zv[1] = _mm256_mul_ps( alphav, xv[1] ); // Store the output. _mm256_storeu_ps( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_ps( (xp + 1*n_elem_per_reg), zv[1] ); xp += 2*n_elem_per_reg; } for ( ; (i + 7) < n; i += 8 ) { // Load the input values. xv[0] = _mm256_loadu_ps( xp + 0*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_ps( alphav, xv[0] ); // Store the output. _mm256_storeu_ps( (xp + 0*n_elem_per_reg), zv[0] ); xp += 1*n_elem_per_reg; } for ( ; (i + 0) < n; i += 1 ) { *xp *= *alpha; xp += 1; } } else { const float alphac = *alpha; for ( i = 0; i < n; ++i ) { *xp *= alphac; xp += incx; } } } // ----------------------------------------------------------------------------- void bli_dscalv_zen_int10 ( conj_t conjalpha, dim_t n, const void* alpha0, void* x0, inc_t incx, const cntx_t* cntx ) { const double* alpha = alpha0; double* x = x0; const dim_t n_elem_per_reg = 4; dim_t i; double* restrict xp; __m256d alphav; __m256d xv[10]; __m256d zv[10]; // If the vector dimension is zero, or if alpha is unit, return early. if ( bli_zero_dim1( n ) || PASTEMAC(d,eq1)( *alpha ) ) return; // If alpha is zero, use setv. if ( PASTEMAC(d,eq0)( *alpha ) ) { if ( cntx == NULL ) cntx = ( cntx_t* )bli_gks_query_cntx(); void* zero = bli_d0; setv_ker_ft f = bli_cntx_get_ukr_dt( BLIS_DOUBLE, BLIS_SETV_KER, cntx ); f ( BLIS_NO_CONJUGATE, n, zero, x, incx, cntx ); return; } // Initialize local pointers. xp = x; if ( incx == 1 ) { // Broadcast the alpha scalar to all elements of a vector register. alphav = _mm256_broadcast_sd( alpha ); for ( i = 0; (i + 39) < n; i += 40 ) { // Load the input values. xv[0] = _mm256_loadu_pd( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_pd( xp + 1*n_elem_per_reg ); xv[2] = _mm256_loadu_pd( xp + 2*n_elem_per_reg ); xv[3] = _mm256_loadu_pd( xp + 3*n_elem_per_reg ); xv[4] = _mm256_loadu_pd( xp + 4*n_elem_per_reg ); xv[5] = _mm256_loadu_pd( xp + 5*n_elem_per_reg ); xv[6] = _mm256_loadu_pd( xp + 6*n_elem_per_reg ); xv[7] = _mm256_loadu_pd( xp + 7*n_elem_per_reg ); xv[8] = _mm256_loadu_pd( xp + 8*n_elem_per_reg ); xv[9] = _mm256_loadu_pd( xp + 9*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_pd( alphav, xv[0] ); zv[1] = _mm256_mul_pd( alphav, xv[1] ); zv[2] = _mm256_mul_pd( alphav, xv[2] ); zv[3] = _mm256_mul_pd( alphav, xv[3] ); zv[4] = _mm256_mul_pd( alphav, xv[4] ); zv[5] = _mm256_mul_pd( alphav, xv[5] ); zv[6] = _mm256_mul_pd( alphav, xv[6] ); zv[7] = _mm256_mul_pd( alphav, xv[7] ); zv[8] = _mm256_mul_pd( alphav, xv[8] ); zv[9] = _mm256_mul_pd( alphav, xv[9] ); // Store the output. _mm256_storeu_pd( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_pd( (xp + 1*n_elem_per_reg), zv[1] ); _mm256_storeu_pd( (xp + 2*n_elem_per_reg), zv[2] ); _mm256_storeu_pd( (xp + 3*n_elem_per_reg), zv[3] ); _mm256_storeu_pd( (xp + 4*n_elem_per_reg), zv[4] ); _mm256_storeu_pd( (xp + 5*n_elem_per_reg), zv[5] ); _mm256_storeu_pd( (xp + 6*n_elem_per_reg), zv[6] ); _mm256_storeu_pd( (xp + 7*n_elem_per_reg), zv[7] ); _mm256_storeu_pd( (xp + 8*n_elem_per_reg), zv[8] ); _mm256_storeu_pd( (xp + 9*n_elem_per_reg), zv[9] ); xp += 10*n_elem_per_reg; } for ( ; (i + 19) < n; i += 20 ) { // Load the input values. xv[0] = _mm256_loadu_pd( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_pd( xp + 1*n_elem_per_reg ); xv[2] = _mm256_loadu_pd( xp + 2*n_elem_per_reg ); xv[3] = _mm256_loadu_pd( xp + 3*n_elem_per_reg ); xv[4] = _mm256_loadu_pd( xp + 4*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_pd( alphav, xv[0] ); zv[1] = _mm256_mul_pd( alphav, xv[1] ); zv[2] = _mm256_mul_pd( alphav, xv[2] ); zv[3] = _mm256_mul_pd( alphav, xv[3] ); zv[4] = _mm256_mul_pd( alphav, xv[4] ); // Store the output. _mm256_storeu_pd( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_pd( (xp + 1*n_elem_per_reg), zv[1] ); _mm256_storeu_pd( (xp + 2*n_elem_per_reg), zv[2] ); _mm256_storeu_pd( (xp + 3*n_elem_per_reg), zv[3] ); _mm256_storeu_pd( (xp + 4*n_elem_per_reg), zv[4] ); xp += 5*n_elem_per_reg; } for ( ; (i + 15) < n; i += 16 ) { // Load the input values. xv[0] = _mm256_loadu_pd( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_pd( xp + 1*n_elem_per_reg ); xv[2] = _mm256_loadu_pd( xp + 2*n_elem_per_reg ); xv[3] = _mm256_loadu_pd( xp + 3*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_pd( alphav, xv[0] ); zv[1] = _mm256_mul_pd( alphav, xv[1] ); zv[2] = _mm256_mul_pd( alphav, xv[2] ); zv[3] = _mm256_mul_pd( alphav, xv[3] ); // Store the output. _mm256_storeu_pd( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_pd( (xp + 1*n_elem_per_reg), zv[1] ); _mm256_storeu_pd( (xp + 2*n_elem_per_reg), zv[2] ); _mm256_storeu_pd( (xp + 3*n_elem_per_reg), zv[3] ); xp += 4*n_elem_per_reg; } for ( ; (i + 7) < n; i += 8 ) { // Load the input values. xv[0] = _mm256_loadu_pd( xp + 0*n_elem_per_reg ); xv[1] = _mm256_loadu_pd( xp + 1*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_pd( alphav, xv[0] ); zv[1] = _mm256_mul_pd( alphav, xv[1] ); // Store the output. _mm256_storeu_pd( (xp + 0*n_elem_per_reg), zv[0] ); _mm256_storeu_pd( (xp + 1*n_elem_per_reg), zv[1] ); xp += 2*n_elem_per_reg; } for ( ; (i + 3) < n; i += 4 ) { // Load the input values. xv[0] = _mm256_loadu_pd( xp + 0*n_elem_per_reg ); // perform : x := alpha * x; zv[0] = _mm256_mul_pd( alphav, xv[0] ); // Store the output. _mm256_storeu_pd( (xp + 0*n_elem_per_reg), zv[0] ); xp += 1*n_elem_per_reg; } for ( ; (i + 0) < n; i += 1 ) { *xp *= *alpha; xp += 1; } } else { const double alphac = *alpha; for ( i = 0; i < n; ++i ) { *xp *= alphac; xp += incx; } } } // ----------------------------------------------------------------------------- // // NOTE: This function definition is provided as a placeholder in order to allow // function names of scalv kernels to be hard-coded in bli_gemv_unf_var2_amd.c. // void bli_cscalv_zen_int10 ( conj_t conjalpha, dim_t n, const void* alpha, void* x, inc_t incx, const cntx_t* cntx ) { scalv_ker_ft f = bli_cntx_get_ukr_dt( BLIS_SCOMPLEX, BLIS_SCALV_KER, cntx ); f ( conjalpha, n, alpha, x, incx, cntx ); }