/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Copyright (C) 2020, Advanced Micro Devices, Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #define BLIS_ASM_SYNTAX_ATT #include "bli_x86_asm_macros.h" /* rrr: -------- ------ -------- -------- ------ -------- -------- += ------ ... -------- -------- ------ -------- -------- ------ : -------- ------ : rcr: -------- | | | | -------- -------- | | | | -------- -------- += | | | | ... -------- -------- | | | | -------- -------- | | | | : -------- | | | | : Assumptions: - B is row-stored; - A is row- or column-stored; - m0 and n0 are at most MR and NR, respectively. Therefore, this (r)ow-preferential kernel is well-suited for contiguous (v)ector loads on B and single-element broadcasts from A. NOTE: These kernels explicitly support column-oriented IO, implemented via an in-register transpose. And thus they also support the crr and ccr cases, though only crr is ever utilized (because ccr is handled by transposing the operation and executing rcr, which does not incur the cost of the in-register transpose). crr: | | | | | | | | ------ -------- | | | | | | | | ------ -------- | | | | | | | | += ------ ... -------- | | | | | | | | ------ -------- | | | | | | | | ------ : | | | | | | | | ------ : */ // Prototype reference microkernels. GEMMSUP_KER_PROT( float, s, gemmsup_r_zen_ref ) void bli_sgemmsup_rv_zen_asm_5x16 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 7*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 7*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 7*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 7*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 7*8)) // prefetch c + 4*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 4*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 4*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 4*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 4*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 4*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 4*8)) // prefetch c + 5*cs_c lea(mem(rdx, rsi, 2), rdx) // rdx = c + 5*cs_c; prefetch(0, mem(rdx, rsi, 1, 4*8)) // prefetch c + 6*cs_c prefetch(0, mem(rdx, rsi, 2, 4*8)) // prefetch c + 7*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm1, ymm2, ymm13) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm1, ymm2, ymm13) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm1, ymm2, ymm13) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm1, ymm2, ymm13) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm1, ymm2, ymm13) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm5, ymm5) vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm7, ymm7) vmulps(ymm0, ymm8, ymm8) vmulps(ymm0, ymm9, ymm9) vmulps(ymm0, ymm10, ymm10) vmulps(ymm0, ymm11, ymm11) vmulps(ymm0, ymm12, ymm12) vmulps(ymm0, ymm13, ymm13) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm5) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm7) vmovups(ymm7, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm8) vmovups(ymm8, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm9) vmovups(ymm9, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm10) vmovups(ymm10, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm11) vmovups(ymm11, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm12) vmovups(ymm12, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm13) vmovups(ymm13, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c /********************************************/ vextractf128(imm(0x0), ymm12, xmm0)//e0-e3 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm12, xmm0)//e4-e7 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c /*********************************************/ vunpcklps(ymm7, ymm5, ymm0) vunpcklps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm7, ymm5, ymm0) vunpckhps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) //lea(mem(rcx, rsi, 8), rcx) // rcx += 8*cs_c vextractf128(imm(0x0), ymm13, xmm0)//e0-e3 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0,xmm0, xmm1) vshufps(imm(0x02), xmm0,xmm0, xmm2) vshufps(imm(0x03), xmm0,xmm0, xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm13, xmm0)//e4-e7 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0,xmm0, xmm1) vshufps(imm(0x02), xmm0,xmm0, xmm2) vshufps(imm(0x03), xmm0,xmm0, xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) vmovups(ymm7, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm8, mem(rcx)) vmovups(ymm9, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm10, mem(rcx)) vmovups(ymm11, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm12, mem(rcx)) vmovups(ymm13, mem(rcx, rsi, 8)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c /********************************************/ vextractf128(imm(0x0), ymm12, xmm0)//e0-e3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm12, xmm0)//e4-e7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c /*********************************************/ vunpcklps(ymm7, ymm5, ymm0) vunpcklps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm7, ymm5, ymm0) vunpckhps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) vextractf128(imm(0x0), ymm13, xmm0)//e0-e3 vshufps(imm(0x01), xmm0,xmm0, xmm1) vshufps(imm(0x02), xmm0,xmm0, xmm2) vshufps(imm(0x03), xmm0,xmm0, xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm13, xmm0)//e4-e7 vshufps(imm(0x01), xmm0,xmm0, xmm1) vshufps(imm(0x02), xmm0,xmm0, xmm2) vshufps(imm(0x03), xmm0,xmm0, xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_4x16 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 7*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 7*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 7*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 7*8)) // prefetch c + 3*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 3*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 3*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 3*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 3*8)) // prefetch c + 5*cs_c lea(mem(rdx, rsi, 2), rdx) // rdx = c + 5*cs_c; prefetch(0, mem(rdx, rsi, 1, 3*8)) // prefetch c + 6*cs_c prefetch(0, mem(rdx, rsi, 2, 3*8)) // prefetch c + 7*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) vfmadd231ps(ymm0, ymm3, ymm10) vfmadd231ps(ymm1, ymm3, ymm11) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm5, ymm5) vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm7, ymm7) vmulps(ymm0, ymm8, ymm8) vmulps(ymm0, ymm9, ymm9) vmulps(ymm0, ymm10, ymm10) vmulps(ymm0, ymm11, ymm11) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm5) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm7) vmovups(ymm7, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm8) vmovups(ymm8, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm9) vmovups(ymm9, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm10) vmovups(ymm10, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm11) vmovups(ymm11, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c vunpcklps(ymm7, ymm5, ymm0) vunpcklps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm7, ymm5, ymm0) vunpckhps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) vmovups(ymm7, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm8, mem(rcx)) vmovups(ymm9, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm10, mem(rcx)) vmovups(ymm11, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c vunpcklps(ymm7, ymm5, ymm0) vunpcklps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm7, ymm5, ymm0) vunpckhps(ymm11, ymm9, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_3x16 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c //lea(mem(rcx, rdi, 2), rdx) // //lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 7*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 7*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 7*8)) // prefetch c + 2*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 2*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 2*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 2*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 2*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 2*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 2*8)) // prefetch c + 5*cs_c lea(mem(rdx, rsi, 2), rdx) // rdx = c + 5*cs_c; prefetch(0, mem(rdx, rsi, 1, 2*8)) // prefetch c + 6*cs_c prefetch(0, mem(rdx, rsi, 2, 2*8)) // prefetch c + 7*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm1, ymm2, ymm9) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm5, ymm5) vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm7, ymm7) vmulps(ymm0, ymm8, ymm8) vmulps(ymm0, ymm9, ymm9) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; lea(mem(rcx, rdi, 2), rdx) // load address of c + 2*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm5) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm7) vmovups(ymm7, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm8) vmovups(ymm8, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm9) vmovups(ymm9, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c /********************************************/ vextractf128(imm(0x0), ymm8, xmm0)//c0-c3 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm11) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm11, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm8, xmm0)//e4-e7 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e4 vfmadd231ps(xmm6, xmm3, xmm1)//e5 vfmadd231ps(xmm8, xmm3, xmm2)//e6 vfmadd231ps(xmm10, xmm3, xmm14)//e7 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c /*********************************************/ vunpcklps(ymm7, ymm5, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm7, ymm5, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) /********************************************/ vextractf128(imm(0x0), ymm9, xmm0)//c0-c3 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm9, xmm0)//e4-e7 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) vmovups(ymm7, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm8, mem(rcx)) vmovups(ymm9, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vperm2f128(imm(0x01),ymm0,ymm0,ymm0) vperm2f128(imm(0x01),ymm2,ymm2,ymm2) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a2b2 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c /********************************************/ vextractf128(imm(0x0), ymm8, xmm0)//c0-c3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm8, xmm0)//c4-c7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c /*********************************************/ vunpcklps(ymm7, ymm5, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm7, ymm5, ymm2) //a2b2a3b3 a6b6a7b7 vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vperm2f128(imm(0x01),ymm0,ymm0,ymm0) vperm2f128(imm(0x01),ymm2,ymm2,ymm2) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a2b2 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) /********************************************/ vextractf128(imm(0x0), ymm9, xmm0)//c0-c3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm9, xmm0)//c4-c7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_2x16 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 7*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 7*8)) // prefetch c + 1*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 1*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 1*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 1*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 1*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 1*8)) // prefetch c + 5*cs_c lea(mem(rdx, rsi, 2), rdx) // rdx = c + 5*cs_c; prefetch(0, mem(rdx, rsi, 1, 1*8)) // prefetch c + 6*cs_c prefetch(0, mem(rdx, rsi, 2, 1*8)) // prefetch c + 7*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) vfmadd231ps(ymm0, ymm3, ymm6) vfmadd231ps(ymm1, ymm3, ymm7) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm5, ymm5) vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm7, ymm7) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) //lea(mem(rcx, rsi, 4), rdx) // load address of c + 4*cs_c; //lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm5) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm7) vmovups(ymm7, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c vunpcklps(ymm7, ymm5, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm7, ymm5, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) vmovups(ymm5, mem(rcx, rsi, 8)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) vmovups(ymm7, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vperm2f128(imm(0x01),ymm0,ymm0,ymm0) vperm2f128(imm(0x01),ymm2,ymm2,ymm2) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a2b2 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c vunpcklps(ymm7, ymm5, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm7, ymm5, ymm2) //a2b2a3b3 a6b6a7b7 vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vperm2f128(imm(0x01),ymm0,ymm0,ymm0) vperm2f128(imm(0x01),ymm2,ymm2,ymm2) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a2b2 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_1x16 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 7*8)) // prefetch c + 0*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 0*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 0*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 0*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 0*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 0*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 0*8)) // prefetch c + 5*cs_c lea(mem(rdx, rsi, 2), rdx) // rdx = c + 5*cs_c; prefetch(0, mem(rdx, rsi, 1, 0*8)) // prefetch c + 6*cs_c prefetch(0, mem(rdx, rsi, 2, 0*8)) // prefetch c + 7*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) vmovups(mem(rbx, 1*32), ymm1) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm1, ymm2, ymm5) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm5, ymm5) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) vfmadd231ps(mem(rcx, rsi, 8), ymm3, ymm5) vmovups(ymm5, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vextractf128(imm(0x0), ymm4, xmm0)//c0-c3 vmovss(mem(rcx),xmm7) vmovss(mem(rcx, rsi, 1),xmm6) vmovss(mem(rcx, rsi, 2),xmm11) vmovss(mem(rcx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm7, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm11, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm4, xmm0)//e4-e7 vmovss(mem(rcx),xmm4) vmovss(mem(rcx, rsi, 1),xmm6) vmovss(mem(rcx, rsi, 2),xmm8) vmovss(mem(rcx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e4 vfmadd231ps(xmm6, xmm3, xmm1)//e5 vfmadd231ps(xmm8, xmm3, xmm2)//e6 vfmadd231ps(xmm10, xmm3, xmm14)//e7 vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c vextractf128(imm(0x0), ymm5, xmm0)//c0-c3 vmovss(mem(rcx),xmm4) vmovss(mem(rcx, rsi, 1),xmm6) vmovss(mem(rcx, rsi, 2),xmm11) vmovss(mem(rcx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm11, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c vextractf128(imm(0x1), ymm5, xmm0)//e4-e7 vmovss(mem(rcx),xmm4) vmovss(mem(rcx, rsi, 1),xmm6) vmovss(mem(rcx, rsi, 2),xmm8) vmovss(mem(rcx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e4 vfmadd231ps(xmm6, xmm3, xmm1)//e5 vfmadd231ps(xmm8, xmm3, xmm2)//e6 vfmadd231ps(xmm10, xmm3, xmm14)//e7 vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) vmovups(ymm5, mem(rcx, rsi, 8)) //add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vextractf128(imm(0x0), ymm4, xmm0)//c0-c3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm4, xmm0)//e4-e7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) vextractf128(imm(0x0), ymm5, xmm0)//c0-c3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm5, xmm0)//e4-e7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_6x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 5*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 5*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 5*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 5*8)) // prefetch c + 5*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 5*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 5*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 5*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 5*8)) // prefetch c + 5*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*16), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) vbroadcastss(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm0, ymm3, ymm14) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*16), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) vbroadcastss(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm0, ymm3, ymm14) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*16), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) vbroadcastss(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm0, ymm3, ymm14) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*16), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) vbroadcastss(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm0, ymm3, ymm14) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*16), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) vbroadcastss(mem(rax, r15, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) vfmadd231ps(ymm0, ymm3, ymm14) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm8, ymm8) vmulps(ymm0, ymm10, ymm10) vmulps(ymm0, ymm12, ymm12) vmulps(ymm0, ymm14, ymm14) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm8) vmovups(ymm8, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm10) vmovups(ymm10, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm12) vmovups(ymm12, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm14) vmovups(ymm14, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) /****6x8 tile is transposed and saved in col major as 8x6*****/ vunpcklps(ymm6, ymm4, ymm0) vunpcklps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += 1*cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += 1*cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += 1*cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) vunpcklps(ymm14, ymm12, ymm0) vextractf128(imm(0x1), ymm0, xmm2) vpermilpd(imm(1),xmm0,xmm5)//e1f1 vpermilpd(imm(1),xmm2,xmm6)//e5f5 vfmadd231ps(mem(rdx), xmm3, xmm0) vfmadd231ps(mem(rdx, rsi, 4), xmm3, xmm2) vmovlpd(xmm0, mem(rdx)) // store ( gamma40..gamma50 ) vmovlpd(xmm2, mem(rdx, rsi, 4)) // store ( gamma44..gamma54 ) lea(mem(rdx, rsi, 1), rdx) vfmadd231ps(mem(rdx), xmm3, xmm5) vfmadd231ps(mem(rdx, rsi, 4), xmm3, xmm6) vmovlpd(xmm5, mem(rdx)) // store ( gamma41..gamma51 ) vmovlpd(xmm6, mem(rdx, rsi, 4)) // store ( gamma45..gamma55 ) lea(mem(rdx, rsi, 1), rdx) vunpckhps(ymm14, ymm12, ymm0) vextractf128(imm(0x1), ymm0, xmm2) vpermilpd(imm(1),xmm0,xmm5) vpermilpd(imm(1),xmm2,xmm6) vfmadd231ps(mem(rdx), xmm3, xmm0) vfmadd231ps(mem(rdx, rsi, 4), xmm3, xmm2) vmovlpd(xmm0, mem(rdx)) // store ( gamma42..gamma52 ) vmovlpd(xmm2, mem(rdx, rsi, 4)) // store ( gamma46..gamma56 ) lea(mem(rdx, rsi, 1), rdx) vfmadd231ps(mem(rdx), xmm3, xmm5) vfmadd231ps(mem(rdx, rsi, 4), xmm3, xmm6) vmovlpd(xmm5, mem(rdx)) // store ( gamma43..gamma53 ) vmovlpd(xmm6, mem(rdx, rsi, 4)) // store ( gamma47..gamma57 ) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vmovups(ymm8, mem(rcx)) add(rdi, rcx) vmovups(ymm10, mem(rcx)) add(rdi, rcx) vmovups(ymm12, mem(rcx)) add(rdi, rcx) vmovups(ymm14, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) vunpcklps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += 1*cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += 1*cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += 1*cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) /******************top right tile 8x2***************************/ vunpcklps(ymm14, ymm12, ymm0) vextractf128(imm(0x1), ymm0, xmm2) vmovlpd(xmm0, mem(rdx)) // store ( gamma40..gamma50 ) vmovlpd(xmm2, mem(rdx, rsi, 4)) // store ( gamma44..gamma54 ) lea(mem(rdx, rsi, 1), rdx) vmovhpd(xmm0, mem(rdx)) // store ( gamma41..gamma51 ) vmovhpd(xmm2, mem(rdx, rsi, 4)) // store ( gamma45..gamma55 ) lea(mem(rdx, rsi, 1), rdx) vunpckhps(ymm14, ymm12, ymm0) vextractf128(imm(0x1), ymm0, xmm2) vmovlpd(xmm0, mem(rdx)) // store ( gamma42..gamma52 ) vmovlpd(xmm2, mem(rdx, rsi, 4)) // store ( gamma46..gamma56 ) lea(mem(rdx, rsi, 1), rdx) vmovhpd(xmm0, mem(rdx)) // store ( gamma43..gamma53 ) vmovhpd(xmm2, mem(rdx, rsi, 4)) // store ( gamma47..gamma57 ) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_5x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 5*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 5*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 5*8)) // prefetch c + 4*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 4*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 4*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 4*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 4*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 4*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 4*8)) // prefetch c + 5*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) vbroadcastss(mem(rax, r8, 4), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm12) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm8, ymm8) vmulps(ymm0, ymm10, ymm10) vmulps(ymm0, ymm12, ymm12) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm8) vmovups(ymm8, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm10) vmovups(ymm10, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm12) vmovups(ymm12, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c /********************************************/ vextractf128(imm(0x0), ymm12, xmm0)//e0-e3 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm12, xmm0)//e4-e7 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm8) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm8, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vmovups(ymm8, mem(rcx)) add(rdi, rcx) vmovups(ymm10, mem(rcx)) add(rdi, rcx) vmovups(ymm12, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c lea(mem(rcx, rsi, 4), rcx) // rcx += 4*cs_c /********************************************/ vextractf128(imm(0x0), ymm12, xmm0)//e0-e3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm12, xmm0)//e4-e7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_4x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 5*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 5*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 3*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 3*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 3*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 3*8)) // prefetch c + 5*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) vfmadd231ps(ymm0, ymm3, ymm10) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm8, ymm8) vmulps(ymm0, ymm10, ymm10) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm8) vmovups(ymm8, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm10) vmovups(ymm10, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm0) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vfmadd231ps(mem(rcx), xmm3, xmm1) vfmadd231ps(mem(rcx, rsi, 4), xmm3, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vmovups(ymm8, mem(rcx)) add(rdi, rcx) vmovups(ymm10, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a4b4a5b5 vunpcklps(ymm10, ymm8, ymm1) //c0d0c1d1 c4d4c5d5 vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma00..gamma30 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma04..gamma34 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma01..gamma31 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma05..gamma35 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vunpckhps(ymm6, ymm4, ymm0) vunpckhps(ymm10, ymm8, ymm1) vshufps(imm(0x4e), ymm1, ymm0, ymm2) vblendps(imm(0xcc), ymm2, ymm0, ymm0) vblendps(imm(0x33), ymm2, ymm1, ymm1) vextractf128(imm(0x1), ymm0, xmm2) vmovups(xmm0, mem(rcx)) // store ( gamma02..gamma32 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma06..gamma36 ) lea(mem(rcx, rsi, 1), rcx) // rcx += cs_c vextractf128(imm(0x1), ymm1, xmm2) vmovups(xmm1, mem(rcx)) // store ( gamma03..gamma33 ) vmovups(xmm2, mem(rcx, rsi, 4)) // store ( gamma07..gamma37 ) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_3x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 5*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 5*8)) // prefetch c + 2*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 2*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 2*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 2*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 2*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 2*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 2*8)) // prefetch c + 5*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm8) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm6, ymm6) vmulps(ymm0, ymm8, ymm8) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 2), rdx) // load address of c + 2*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm8) vmovups(ymm8, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) /********************************************/ vextractf128(imm(0x0), ymm8, xmm0)//c0-c3 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm11) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm11, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rcx += cs_c vextractf128(imm(0x1), ymm8, xmm0)//c0-c3 vmovss(mem(rdx),xmm4) vmovss(mem(rdx, rsi, 1),xmm6) vmovss(mem(rdx, rsi, 2),xmm11) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm11, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) add(rdi, rcx) vmovups(ymm8, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) /********************************************/ vextractf128(imm(0x0), ymm8, xmm0)//c0-c3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) lea(mem(rdx, rsi, 4), rdx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm8, xmm0)//c4-c7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rdx)) vmovss(xmm1, mem(rdx, rsi, 1)) vmovss(xmm2, mem(rdx, rsi, 2)) vmovss(xmm14, mem(rdx, rax, 1)) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_2x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 5*8)) // prefetch c + 1*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 1*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 1*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 1*8)) // prefetch c + 3*cs_c prefetch(0, mem(rdx, rsi, 1, 1*8)) // prefetch c + 4*cs_c prefetch(0, mem(rdx, rsi, 2, 1*8)) // prefetch c + 5*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) vfmadd231ps(ymm0, ymm3, ymm6) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha vmulps(ymm0, ymm6, ymm6) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0,xmm0,xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), ymm3, ymm6) vmovups(ymm6, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) add(rdi, rcx) vmovups(ymm6, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(ymm6, ymm4, ymm0) //a0b0a1b1 a2b2a3b3 vunpckhps(ymm6, ymm4, ymm2) //a2b2a3b3 a6b6a7b7 vperm2f128(imm(0x01),ymm0,ymm0,ymm11) vperm2f128(imm(0x01),ymm2,ymm2,ymm12) vshufpd(imm(0x01), xmm0, xmm0, xmm1)//a1b1 vshufpd(imm(0x01), xmm2, xmm2, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm2) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm2, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) lea(mem(rcx, rsi, 4), rcx) // rcx += cs_c vshufpd(imm(0x01), xmm11, xmm11, xmm1)//a1b1 vshufpd(imm(0x01), xmm12, xmm12, xmm10)//a3b3 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rsi, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm11) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm11, mem(rcx)) // store ( gamma00..gamma10 ) vmovsd(xmm1, mem(rcx, rsi, 1)) // store ( gamma01..gamma11 ) vmovsd(mem(rcx, rsi, 2),xmm4) vmovsd(mem(rcx, rax, 1),xmm6) vfmadd231ps(xmm4, xmm3, xmm12) vfmadd231ps(xmm6, xmm3, xmm10) vmovsd(xmm12, mem(rcx, rsi, 2)) // store ( gamma02..gamma12 ) vmovsd(xmm10, mem(rcx, rax, 1)) // store ( gamma03..gamma13 ) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_1x8 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*rs_c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), ymm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(ymm0, ymm2, ymm4) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(ymm0, ymm4, ymm4) // scale by alpha mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0,xmm0,xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), ymm3, ymm4) vmovups(ymm4, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) /********************************************/ vextractf128(imm(0x0), ymm4, xmm0)//c0-c3 vmovss(mem(rcx),xmm8) vmovss(mem(rcx, rsi, 1),xmm6) vmovss(mem(rcx, rsi, 2),xmm11) vmovss(mem(rcx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm8, xmm3, xmm0)//e0 vfmadd231ps(xmm6, xmm3, xmm1)//e1 vfmadd231ps(xmm11, xmm3, xmm2)//e2 vfmadd231ps(xmm10, xmm3, xmm14)//e3 vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm4, xmm0)//e4-e7 vmovss(mem(rcx),xmm4) vmovss(mem(rcx, rsi, 1),xmm6) vmovss(mem(rcx, rsi, 2),xmm8) vmovss(mem(rcx, rax, 1),xmm10) vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vfmadd231ps(xmm4, xmm3, xmm0)//e4 vfmadd231ps(xmm6, xmm3, xmm1)//e5 vfmadd231ps(xmm8, xmm3, xmm2)//e6 vfmadd231ps(xmm10, xmm3, xmm14)//e7 vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(ymm4, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vextractf128(imm(0x0), ymm4, xmm0)//c0-c3 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) lea(mem(rcx, rsi, 4), rcx) // rdx += 4*cs_c vextractf128(imm(0x1), ymm4, xmm0)//c4-c7 vshufps(imm(0x01), xmm0, xmm0,xmm1) vshufps(imm(0x02), xmm0, xmm0,xmm2) vshufps(imm(0x03), xmm0, xmm0,xmm14) vmovss(xmm0, mem(rcx)) vmovss(xmm1, mem(rcx, rsi, 1)) vmovss(xmm2, mem(rcx, rsi, 2)) vmovss(xmm14, mem(rcx, rax, 1)) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_6x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 3*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 3*8)) // prefetch c + 5*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 5*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 5*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 5*8)) // prefetch c + 3*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) vmulps(xmm0, xmm10, xmm10) vmulps(xmm0, xmm12, xmm12) vmulps(xmm0, xmm14, xmm14) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm8) vmovups(xmm8, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm10) vmovups(xmm10, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm12) vmovups(xmm12, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm14) vmovups(xmm14, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklpd(xmm1, xmm0, xmm2)//a0b0c0d0 vunpckhpd(xmm1, xmm0, xmm5)//a1b1c1d1 vfmadd231ps(mem(rcx), xmm3, xmm2) vfmadd231ps(mem(rcx, rsi, 1), xmm3, xmm5) vmovups(xmm2, mem(rcx)) vmovups(xmm5, mem(rcx, rsi, 1)) lea(mem(rcx, rsi, 2), rcx) // rcx += 2*cs_c vunpckhps(xmm6, xmm4, xmm0)//a2b2a3b3 vunpckhps(xmm10, xmm8, xmm1)//c2d2c3d3 vunpcklpd(xmm1, xmm0, xmm7)//a2b2c2d2 vunpckhpd(xmm1, xmm0, xmm9)//a3b3c3d3 vfmadd231ps(mem(rcx), xmm3, xmm7) vfmadd231ps(mem(rcx, rsi, 1), xmm3, xmm9) vmovups(xmm7, mem(rcx)) vmovups(xmm9, mem(rcx, rsi, 1)) vunpcklps(xmm14, xmm12, xmm0)//e0f0e1f1 vunpckhps(xmm14, xmm12, xmm1)//e2f2e3f3 vmovsd(mem(rdx),xmm2) vmovsd(mem(rdx, rsi, 1),xmm4) vmovsd(mem(rdx, rsi, 2),xmm6) vmovsd(mem(rdx, rax, 1),xmm8) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//e1f1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//e3f3 vfmadd231ps(xmm2, xmm3, xmm0) vfmadd231ps(xmm4, xmm3, xmm5) vfmadd231ps(xmm6, xmm3, xmm1) vfmadd231ps(xmm8, xmm3, xmm7) vmovsd(xmm0, mem(rdx)) //e0f0 vmovsd(xmm5, mem(rdx, rsi, 1)) //e1f1 vmovsd(xmm1, mem(rdx, rsi, 2)) //e2f2 vmovsd(xmm7, mem(rdx, rax, 1)) //e3f3 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vmovups(xmm8, mem(rcx)) add(rdi, rcx) vmovups(xmm10, mem(rcx)) add(rdi, rcx) vmovups(xmm12, mem(rcx)) add(rdi, rcx) vmovups(xmm14, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklpd(xmm1, xmm0, xmm2)//a0b0c0d0 vunpckhpd(xmm1, xmm0, xmm5)//a1b1c1d1 vmovups(xmm2, mem(rcx)) vmovups(xmm5, mem(rcx, rsi, 1)) lea(mem(rcx, rsi, 2), rcx) // rcx += 2*cs_c vunpckhps(xmm6, xmm4, xmm0)//a2b2a3b3 vunpckhps(xmm10, xmm8, xmm1)//c2d2c3d3 vunpcklpd(xmm1, xmm0, xmm7)//a2b2c2d2 vunpckhpd(xmm1, xmm0, xmm9)//a3b3c3d3 vmovups(xmm7, mem(rcx)) vmovups(xmm9, mem(rcx, rsi, 1)) vunpcklps(xmm14, xmm12, xmm0)//e0f0e1f1 vunpckhps(xmm14, xmm12, xmm1)//e2f2e3f3 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//e1f1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//e3f3 vmovsd(xmm0, mem(rdx)) //e0f0 vmovsd(xmm5, mem(rdx, rsi, 1)) //e1f1 vmovsd(xmm1, mem(rdx, rsi, 2)) //e2f2 vmovsd(xmm7, mem(rdx, rax, 1)) //e3f3 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_5x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 3*8)) // prefetch c + 4*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 4*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 4*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 4*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 4*8)) // prefetch c + 3*cs_c label(.SPOSTPFETCH) // done prefetching c mov(r9, rsi) // rsi = rs_b; sal(imm(5), rsi) // rsi = 16*rs_b; lea(mem(rax, rsi, 1), rdx) // rdx = b + 16*rs_b; mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) vmulps(xmm0, xmm10, xmm10) vmulps(xmm0, xmm12, xmm12) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm8) vmovups(xmm8, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm10) vmovups(xmm10, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm12) vmovups(xmm12, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklpd(xmm1, xmm0, xmm2)//a0b0c0d0 vunpckhpd(xmm1, xmm0, xmm5)//a1b1c1d1 vfmadd231ps(mem(rcx), xmm3, xmm2) vfmadd231ps(mem(rcx, rsi, 1), xmm3, xmm5) vmovups(xmm2, mem(rcx)) vmovups(xmm5, mem(rcx, rsi, 1)) lea(mem(rcx, rsi, 2), rcx) // rcx += 2*cs_c vunpckhps(xmm6, xmm4, xmm0)//a2b2a3b3 vunpckhps(xmm10, xmm8, xmm1)//c2d2c3d3 vunpcklpd(xmm1, xmm0, xmm7)//a2b2c2d2 vunpckhpd(xmm1, xmm0, xmm9)//a3b3c3d3 vfmadd231ps(mem(rcx), xmm3, xmm7) vfmadd231ps(mem(rcx, rsi, 1), xmm3, xmm9) vmovups(xmm7, mem(rcx)) vmovups(xmm9, mem(rcx, rsi, 1)) vmovss(mem(rdx),xmm2) vmovss(mem(rdx, rsi, 1),xmm4) vmovss(mem(rdx, rsi, 2),xmm6) vmovss(mem(rdx, rax, 1),xmm8) vshufps(imm(0x01), xmm12, xmm12,xmm1) vshufps(imm(0x02), xmm12, xmm12,xmm5) vshufps(imm(0x03), xmm12, xmm12,xmm7) vfmadd231ps(xmm2, xmm3, xmm12) vfmadd231ps(xmm4, xmm3, xmm1) vfmadd231ps(xmm6, xmm3, xmm5) vfmadd231ps(xmm8, xmm3, xmm7) vmovss(xmm12, mem(rdx)) //e0 vmovss(xmm1, mem(rdx, rsi, 1)) //e1 vmovss(xmm5, mem(rdx, rsi, 2)) //e2 vmovss(xmm7, mem(rdx, rax, 1)) //e3 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vmovups(xmm8, mem(rcx)) add(rdi, rcx) vmovups(xmm10, mem(rcx)) add(rdi, rcx) vmovups(xmm12, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklpd(xmm1, xmm0, xmm2)//a0b0c0d0 vunpckhpd(xmm1, xmm0, xmm5)//a1b1c1d1 vmovups(xmm2, mem(rcx)) vmovups(xmm5, mem(rcx, rsi, 1)) lea(mem(rcx, rsi, 2), rcx) // rcx += 2*cs_c vunpckhps(xmm6, xmm4, xmm0)//a2b2a3b3 vunpckhps(xmm10, xmm8, xmm1)//c2d2c3d3 vunpcklpd(xmm1, xmm0, xmm7)//a2b2c2d2 vunpckhpd(xmm1, xmm0, xmm9)//a3b3c3d3 vmovups(xmm7, mem(rcx)) vmovups(xmm9, mem(rcx, rsi, 1)) vshufps(imm(0x01), xmm12, xmm12,xmm1) vshufps(imm(0x02), xmm12, xmm12,xmm5) vshufps(imm(0x03), xmm12, xmm12,xmm7) vmovss(xmm12, mem(rdx)) //e0 vmovss(xmm1, mem(rdx, rsi, 1)) //e1 vmovss(xmm5, mem(rdx, rsi, 2)) //e2 vmovss(xmm7, mem(rdx, rax, 1)) //e3 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_4x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 3*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 3*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 3*8)) // prefetch c + 3*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) vmulps(xmm0, xmm10, xmm10) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm8) vmovups(xmm8, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm10) vmovups(xmm10, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklpd(xmm1, xmm0, xmm2)//a0b0c0d0 vunpckhpd(xmm1, xmm0, xmm5)//a1b1c1d1 vfmadd231ps(mem(rcx), xmm3, xmm2) vfmadd231ps(mem(rcx, rsi, 1), xmm3, xmm5) vmovups(xmm2, mem(rcx)) vmovups(xmm5, mem(rcx, rsi, 1)) lea(mem(rcx, rsi, 2), rcx) // rcx += 2*cs_c vunpckhps(xmm6, xmm4, xmm0)//a2b2a3b3 vunpckhps(xmm10, xmm8, xmm1)//c2d2c3d3 vunpcklpd(xmm1, xmm0, xmm7)//a2b2c2d2 vunpckhpd(xmm1, xmm0, xmm9)//a3b3c3d3 vfmadd231ps(mem(rcx), xmm3, xmm7) vfmadd231ps(mem(rcx, rsi, 1), xmm3, xmm9) vmovups(xmm7, mem(rcx)) vmovups(xmm9, mem(rcx, rsi, 1)) jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vmovups(xmm8, mem(rcx)) add(rdi, rcx) vmovups(xmm10, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklpd(xmm1, xmm0, xmm2)//a0b0c0d0 vunpckhpd(xmm1, xmm0, xmm5)//a1b1c1d1 vmovups(xmm2, mem(rcx)) vmovups(xmm5, mem(rcx, rsi, 1)) lea(mem(rcx, rsi, 2), rcx) // rcx += 2*cs_c vunpckhps(xmm6, xmm4, xmm0)//a2b2a3b3 vunpckhps(xmm10, xmm8, xmm1)//c2d2c3d3 vunpcklpd(xmm1, xmm0, xmm7)//a2b2c2d2 vunpckhpd(xmm1, xmm0, xmm9)//a3b3c3d3 vmovups(xmm7, mem(rcx)) vmovups(xmm9, mem(rcx, rsi, 1)) label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_3x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 3*8)) // prefetch c + 2*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 2*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 2*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 2*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 2*8)) // prefetch c + 3*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 2), rdx) // load address of c + 2*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm8) vmovups(xmm8, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//e0f0e1f1 vunpckhps(xmm6, xmm4, xmm1)//e2f2e3f3 vmovsd(mem(rcx),xmm2) vmovsd(mem(rcx, rsi, 1),xmm4) vmovsd(mem(rcx, rsi, 2),xmm6) vmovsd(mem(rcx, rax, 1),xmm10) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//e1f1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//e3f3 vfmadd231ps(xmm2, xmm3, xmm0) vfmadd231ps(xmm4, xmm3, xmm5) vfmadd231ps(xmm6, xmm3, xmm1) vfmadd231ps(xmm10, xmm3, xmm7) vmovsd(xmm0, mem(rcx)) //e0f0 vmovsd(xmm5, mem(rcx, rsi, 1)) //e1f1 vmovsd(xmm1, mem(rcx, rsi, 2)) //e2f2 vmovsd(xmm7, mem(rcx, rax, 1)) //e3f3 vmovss(mem(rdx),xmm2) vmovss(mem(rdx, rsi, 1),xmm4) vmovss(mem(rdx, rsi, 2),xmm6) vmovss(mem(rdx, rax, 1),xmm10) vshufps(imm(0x01), xmm8, xmm8,xmm1) vshufps(imm(0x02), xmm8, xmm8,xmm5) vshufps(imm(0x03), xmm8, xmm8,xmm7) vfmadd231ps(xmm2, xmm3, xmm8) vfmadd231ps(xmm4, xmm3, xmm1) vfmadd231ps(xmm6, xmm3, xmm5) vfmadd231ps(xmm10, xmm3, xmm7) vmovss(xmm8, mem(rdx)) //e0 vmovss(xmm1, mem(rdx, rsi, 1)) //e1 vmovss(xmm5, mem(rdx, rsi, 2)) //e2 vmovss(xmm7, mem(rdx, rax, 1)) //e3 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vmovups(xmm6, mem(rcx)) add(rdi, rcx) vmovups(xmm8, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//e0f0e1f1 vunpckhps(xmm6, xmm4, xmm1)//e2f2e3f3 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//e1f1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//e3f3 vmovsd(xmm0, mem(rcx)) //e0f0 vmovsd(xmm5, mem(rcx, rsi, 1)) //e1f1 vmovsd(xmm1, mem(rcx, rsi, 2)) //e2f2 vmovsd(xmm7, mem(rcx, rax, 1)) //e3f3 vshufps(imm(0x01), xmm8, xmm8,xmm1) vshufps(imm(0x02), xmm8, xmm8,xmm5) vshufps(imm(0x03), xmm8, xmm8,xmm7) vmovss(xmm8, mem(rdx)) //e0 vmovss(xmm1, mem(rdx, rsi, 1)) //e1 vmovss(xmm5, mem(rdx, rsi, 2)) //e2 vmovss(xmm7, mem(rdx, rax, 1)) //e3 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_2x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 3*8)) // prefetch c + 1*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 1*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 1*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 1*8)) // prefetch c + 3*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovups(xmm6, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//e0f0e1f1 vunpckhps(xmm6, xmm4, xmm1)//e2f2e3f3 vmovsd(mem(rcx),xmm2) vmovsd(mem(rcx, rsi, 1),xmm4) vmovsd(mem(rcx, rsi, 2),xmm6) vmovsd(mem(rcx, rax, 1),xmm10) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//e1f1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//e3f3 vfmadd231ps(xmm2, xmm3, xmm0) vfmadd231ps(xmm4, xmm3, xmm5) vfmadd231ps(xmm6, xmm3, xmm1) vfmadd231ps(xmm10, xmm3, xmm7) vmovsd(xmm0, mem(rcx)) //e0f0 vmovsd(xmm5, mem(rcx, rsi, 1)) //e1f1 vmovsd(xmm1, mem(rcx, rsi, 2)) //e2f2 vmovsd(xmm7, mem(rcx, rax, 1)) //e3f3 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) add(rdi, rcx) vmovups(xmm6, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//e0f0e1f1 vunpckhps(xmm6, xmm4, xmm1)//e2f2e3f3 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//e1f1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//e3f3 vmovsd(xmm0, mem(rcx)) //e0f0 vmovsd(xmm5, mem(rcx, rsi, 1)) //e1f1 vmovsd(xmm1, mem(rcx, rsi, 2)) //e2f2 vmovsd(xmm7, mem(rcx, rax, 1)) //e3f3 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_1x4 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 0*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 0*8)) // prefetch c + 1*cs_c prefetch(0, mem(rcx, rsi, 2, 0*8)) // prefetch c + 2*cs_c prefetch(0, mem(rdx, 0*8)) // prefetch c + 3*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovups(xmm4, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vmovss(mem(rcx),xmm2) vmovss(mem(rcx, rsi, 1),xmm6) vmovss(mem(rcx, rsi, 2),xmm8) vmovss(mem(rcx, rax, 1),xmm10) vshufps(imm(0x01), xmm4, xmm4,xmm1) vshufps(imm(0x02), xmm4, xmm4,xmm5) vshufps(imm(0x03), xmm4, xmm4,xmm7) vfmadd231ps(xmm2, xmm3, xmm4) vfmadd231ps(xmm6, xmm3, xmm1) vfmadd231ps(xmm8, xmm3, xmm5) vfmadd231ps(xmm10, xmm3, xmm7) vmovss(xmm4, mem(rcx)) //e0 vmovss(xmm1, mem(rcx, rsi, 1)) //e1 vmovss(xmm5, mem(rcx, rsi, 2)) //e2 vmovss(xmm7, mem(rcx, rax, 1)) //e3 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovups(xmm4, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vshufps(imm(0x01), xmm4, xmm4,xmm1) vshufps(imm(0x02), xmm4, xmm4,xmm5) vshufps(imm(0x03), xmm4, xmm4,xmm7) vmovss(xmm4, mem(rcx)) //e0 vmovss(xmm1, mem(rcx, rsi, 1)) //e1 vmovss(xmm5, mem(rcx, rsi, 2)) //e2 vmovss(xmm7, mem(rcx, rax, 1)) //e3 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_6x2 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a lea(mem(r8, r8, 4), r15) // r15 = 5*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 1*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 1*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 1*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 1*8)) // prefetch c + 4*rs_c prefetch(0, mem(rdx, rdi, 2, 1*8)) // prefetch c + 5*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) prefetch(0, mem(rcx, 5*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 5*8)) // prefetch c + 1*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) vbroadcastss(mem(rax, r15, 1), xmm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) vfmadd231ps(xmm0, xmm3, xmm14) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) vmulps(xmm0, xmm10, xmm10) vmulps(xmm0, xmm12, xmm12) vmulps(xmm0, xmm14, xmm14) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vmovsd(mem(rcx), xmm0)////a0a1 vfmadd231ps(xmm0, xmm3, xmm4)//c*beta+(a0a1) vmovsd(xmm4, mem(rcx))//a0a1 add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm6) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm8) vmovsd(xmm8, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm10) vmovsd(xmm10, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm12) vmovsd(xmm12, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm14) vmovsd(xmm14, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklps(xmm14, xmm12, xmm2)//e0f0 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rdi, 2),xmm6) vmovsd(mem(rcx, rdi, 4),xmm8) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//c1d1 vshufpd(imm(0x01), xmm2, xmm2, xmm9)//e1f1 vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vfmadd231ps(xmm8, xmm3, xmm2) vmovsd(xmm0, mem(rcx)) //a0b0 vmovsd(xmm1, mem(rcx, rdi, 2)) //c0d0 vmovsd(xmm2, mem(rcx, rdi, 4)) //e0f0 lea(mem(rcx, rsi, 1), rcx) vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rdi, 2),xmm6) vmovsd(mem(rcx, rdi, 4),xmm8) vfmadd231ps(xmm4, xmm3, xmm5) vfmadd231ps(xmm6, xmm3, xmm7) vfmadd231ps(xmm8, xmm3, xmm9) vmovsd(xmm5, mem(rcx)) //a1b1 vmovsd(xmm7, mem(rcx, rdi, 2)) //c1d1 vmovsd(xmm9, mem(rcx, rdi, 4)) //e1f1 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovsd(xmm4, mem(rcx)) add(rdi, rcx) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vmovsd(xmm8, mem(rcx)) add(rdi, rcx) vmovsd(xmm10, mem(rcx)) add(rdi, rcx) vmovsd(xmm12, mem(rcx)) add(rdi, rcx) vmovsd(xmm14, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vunpcklps(xmm14, xmm12, xmm2)//e0f0 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//c1d1 vshufpd(imm(0x01), xmm2, xmm2, xmm9)//e1f1 vmovsd(xmm0, mem(rcx)) //a0b0 vmovsd(xmm1, mem(rcx, rdi, 2)) //c0d0 vmovsd(xmm2, mem(rcx, rdi, 4)) //e0f0 lea(mem(rcx, rsi, 1), rcx) vmovsd(xmm5, mem(rcx)) //e0f0 vmovsd(xmm7, mem(rcx, rdi, 2)) //e1f1 vmovsd(xmm9, mem(rcx, rdi, 4)) //e0f0 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_5x2 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 1*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 1*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 1*8)) // prefetch c + 3*rs_c prefetch(0, mem(rdx, rdi, 1, 1*8)) // prefetch c + 4*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) prefetch(0, mem(rcx, 4*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 4*8)) // prefetch c + 1*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) vbroadcastss(mem(rax, r8, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), xmm2) vbroadcastss(mem(rax, r13, 1), xmm3) vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) vbroadcastss(mem(rax, r8, 4), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm12) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) vmulps(xmm0, xmm10, xmm10) vmulps(xmm0, xmm12, xmm12) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 4), rdx) // load address of c + 4*rs_c; // now avoid loading C if beta == 0 vxorps(xmm0, xmm0, xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vmovsd(mem(rcx), xmm0)////a0a1 vfmadd231ps(xmm0, xmm3, xmm4)//c*beta+(a0a1) vmovsd(xmm4, mem(rcx))//a0a1 add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm6) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm8) vmovsd(xmm8, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm10) vmovsd(xmm10, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm12) vmovsd(xmm12, mem(rcx)) add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rdi, 2),xmm6) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//c1d1 vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) //a0b0 vmovsd(xmm1, mem(rcx, rdi, 2)) //c0d0 vmovss(mem(rcx, rdi, 4),xmm4) vshufps(imm(0x01), xmm12, xmm12, xmm9)//e1 vfmadd231ps(xmm4, xmm3, xmm12) vmovss(xmm12,mem(rcx,rdi,4))//e0 lea(mem(rcx, rsi, 1), rcx) vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rdi, 2),xmm6) vfmadd231ps(xmm4, xmm3, xmm5) vfmadd231ps(xmm6, xmm3, xmm7) vmovsd(xmm5, mem(rcx)) //a1b1 vmovsd(xmm7, mem(rcx, rdi, 2)) //c1d1 vmovss( mem(rcx, rdi, 4),xmm4) vfmadd231ps(xmm4, xmm3, xmm9) vmovss(xmm9,mem(rcx,rdi,4))//e1 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovsd(xmm4, mem(rcx))//a0a1 add(rdi, rcx) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vmovsd(xmm8, mem(rcx)) add(rdi, rcx) vmovsd(xmm10, mem(rcx)) add(rdi, rcx) vmovsd(xmm12, mem(rcx)) add(rdi, rcx) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//c1d1 vmovsd(xmm0, mem(rcx)) //a0b0 vmovsd(xmm1, mem(rcx, rdi, 2)) //c0d0 vshufps(imm(0x01), xmm12, xmm12, xmm9)//e1 vmovss(xmm12,mem(rcx,rdi,4))//e0 lea(mem(rcx, rsi, 1), rcx) vmovsd(xmm5, mem(rcx)) //a1b1 vmovsd(xmm7, mem(rcx, rdi, 2)) //c1d1 vmovss(xmm9,mem(rcx,rdi,4))//e1 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_4x2 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) lea(mem(r8, r8, 2), r13) // r13 = 3*rs_a mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c lea(mem(rcx, rdi, 2), rdx) // lea(mem(rdx, rdi, 1), rdx) // rdx = c + 3*rs_c; prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 1*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 1*8)) // prefetch c + 2*rs_c prefetch(0, mem(rdx, 1*8)) // prefetch c + 3*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) lea(mem(rcx, rsi, 2), rdx) // lea(mem(rdx, rsi, 1), rdx) // rdx = c + 3*cs_c; prefetch(0, mem(rcx, 3*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 3*8)) // prefetch c + 1*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) vbroadcastss(mem(rax, r13, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) vfmadd231ps(xmm0, xmm3, xmm10) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) vmulps(xmm0, xmm10, xmm10) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) // now avoid loading C if beta == 0 vxorps(xmm0,xmm0,xmm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vmovsd(mem(rcx), xmm0)////a0a1 vfmadd231ps(xmm0, xmm3, xmm4)//c*beta+(a0a1) vmovsd(xmm4, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm6) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm8) vmovsd(xmm8, mem(rcx)) add(rdi, rcx) vmovsd(mem(rcx), xmm0) vfmadd231ps(xmm0, xmm3, xmm10) vmovsd(xmm10, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rdi, 2),xmm6) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//c1d1 vfmadd231ps(xmm4, xmm3, xmm0) vfmadd231ps(xmm6, xmm3, xmm1) vmovsd(xmm0, mem(rcx)) //a0b0 vmovsd(xmm1, mem(rcx, rdi, 2)) //c0d0 lea(mem(rcx, rsi, 1), rcx) vmovsd(mem(rcx),xmm4) vmovsd(mem(rcx, rdi, 2),xmm6) vfmadd231ps(xmm4, xmm3, xmm5) vfmadd231ps(xmm6, xmm3, xmm7) vmovsd(xmm5, mem(rcx)) //a1b1 vmovsd(xmm7, mem(rcx, rdi, 2)) //c1d1 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovsd(xmm4, mem(rcx)) add(rdi, rcx) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vmovsd(xmm8, mem(rcx)) add(rdi, rcx) vmovsd(xmm10, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vunpcklps(xmm10, xmm8, xmm1)//c0d0c1d1 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vshufpd(imm(0x01), xmm1, xmm1, xmm7)//c1d1 vmovsd(xmm0, mem(rcx)) //a0b0 vmovsd(xmm1, mem(rcx, rdi, 2)) //c0d0 lea(mem(rcx, rsi, 1), rcx) vmovsd(xmm5, mem(rcx)) //a1b1 vmovsd(xmm7, mem(rcx, rdi, 2)) //c1d1 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_3x2 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 1*8)) // prefetch c + 1*rs_c prefetch(0, mem(rcx, rdi, 2, 1*8)) // prefetch c + 2*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) prefetch(0, mem(rcx, 2*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 2*8)) // prefetch c + 1*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) vbroadcastss(mem(rax, r8, 2), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm8) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) vmulps(xmm0, xmm8, xmm8) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) lea(mem(rcx, rdi, 2), rdx) // load address of c + 2*rs_c; lea(mem(rsi, rsi, 2), rax) // rax = 3*cs_c; // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovsd(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm8) vmovsd(xmm8, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vmovsd(mem(rcx),xmm4) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vfmadd231ps(xmm4, xmm3, xmm0) vmovsd(xmm0, mem(rcx)) //a0b0 vmovss(mem(rcx,rdi,2),xmm4) vshufps(imm(0x01), xmm8, xmm8, xmm9)//c1 vfmadd231ps(xmm4, xmm3, xmm8) vmovss(xmm8,mem(rcx,rdi,2))//c0 lea(mem(rcx, rsi, 1), rcx) vmovsd(mem(rcx),xmm4) vfmadd231ps(xmm4, xmm3, xmm5) vmovsd(xmm5, mem(rcx)) //a1b1 vmovss(mem(rcx,rdi,2),xmm4) vfmadd231ps(xmm4, xmm3, xmm9) vmovss(xmm9,mem(rcx,rdi,2))//c1 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovsd(xmm4, mem(rcx)) add(rdi, rcx) vmovsd(xmm6, mem(rcx)) add(rdi, rcx) vmovsd(xmm8, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vmovsd(xmm0, mem(rcx)) //a0b0 vshufps(imm(0x01), xmm8, xmm8, xmm9)//c1 vmovss(xmm8,mem(rcx,rdi,2))//c0 lea(mem(rcx, rsi, 1), rcx) vmovsd(xmm5, mem(rcx)) //a1b1 vmovss(xmm9,mem(rcx,rdi,2))//c1 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_2x2 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*rs_c prefetch(0, mem(rcx, rdi, 1, 1*8)) // prefetch c + 1*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 1*8)) // prefetch c + 1*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) vbroadcastss(mem(rax, r8, 1), ymm3) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) vfmadd231ps(xmm0, xmm3, xmm6) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), ymm0) // load alpha and duplicate vbroadcastss(mem(rbx), ymm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha vmulps(xmm0, xmm6, xmm6) mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovsd(xmm4, mem(rcx)) add(rdi, rcx) vfmadd231ps(mem(rcx), xmm3, xmm6) vmovsd(xmm6, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vmovsd(mem(rcx),xmm4) vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vfmadd231ps(xmm4, xmm3, xmm0) vmovsd(xmm0, mem(rcx)) //a0b0 lea(mem(rcx, rsi, 1), rcx) vmovsd(mem(rcx),xmm4) vfmadd231ps(xmm4, xmm3, xmm5) vmovsd(xmm5, mem(rcx)) //a1b1 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovsd(xmm4, mem(rcx)) add(rdi, rcx) vmovsd(xmm6, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vunpcklps(xmm6, xmm4, xmm0)//a0b0a1b1 vshufpd(imm(0x01), xmm0, xmm0, xmm5)//a1b1 vmovsd(xmm0, mem(rcx)) //a0b0 vmovsd(xmm5, mem(rcx, rsi, 1)) //a1b1 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } void bli_sgemmsup_rv_zen_asm_1x2 ( conj_t conja, conj_t conjb, dim_t m0, dim_t n0, dim_t k0, float* restrict alpha, float* restrict a, inc_t rs_a0, inc_t cs_a0, float* restrict b, inc_t rs_b0, inc_t cs_b0, float* restrict beta, float* restrict c, inc_t rs_c0, inc_t cs_c0, auxinfo_t* restrict data, cntx_t* restrict cntx ) { //void* a_next = bli_auxinfo_next_a( data ); //void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_iter = k0 / 4; uint64_t k_left = k0 % 4; uint64_t rs_a = rs_a0; uint64_t cs_a = cs_a0; uint64_t rs_b = rs_b0; uint64_t cs_b = cs_b0; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; // ------------------------------------------------------------------------- begin_asm() vxorps(ymm4, ymm4, ymm4) vxorps(ymm5, ymm5, ymm5) vxorps(ymm6, ymm6, ymm6) vxorps(ymm7, ymm7, ymm7) vxorps(ymm8, ymm8, ymm8) vxorps(ymm9, ymm9, ymm9) vxorps(ymm10, ymm10, ymm10) vxorps(ymm11, ymm11, ymm11) vxorps(ymm12, ymm12, ymm12) vxorps(ymm13, ymm13, ymm13) vxorps(ymm14, ymm14, ymm14) vxorps(ymm15, ymm15, ymm15) mov(var(a), rax) // load address of a. mov(var(rs_a), r8) // load rs_a mov(var(cs_a), r9) // load cs_a lea(mem(, r8, 4), r8) // rs_a *= sizeof(float) lea(mem(, r9, 4), r9) // cs_a *= sizeof(float) mov(var(b), rbx) // load address of b. mov(var(rs_b), r10) // load rs_b lea(mem(, r10, 4), r10) // rs_b *= sizeof(float) // NOTE: We cannot pre-load elements of a or b // because it could eventually, in the last // unrolled iter or the cleanup loop, result // in reading beyond the bounds allocated mem // (the likely result: a segmentation fault). mov(var(c), rcx) // load address of c mov(var(rs_c), rdi) // load rs_c lea(mem(, rdi, 4), rdi) // rs_c *= sizeof(float) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLPFETCH) // jump to column storage case label(.SROWPFETCH) // row-stored prefetching on c prefetch(0, mem(rcx, 1*8)) // prefetch c + 0*rs_c jmp(.SPOSTPFETCH) // jump to end of prefetching c label(.SCOLPFETCH) // column-stored prefetching c mov(var(cs_c), rsi) // load cs_c to rsi (temporarily) lea(mem(, rsi, 4), rsi) // cs_c *= sizeof(float) prefetch(0, mem(rcx, 0*8)) // prefetch c + 0*cs_c prefetch(0, mem(rcx, rsi, 1, 0*8)) // prefetch c + 1*cs_c label(.SPOSTPFETCH) // done prefetching c mov(var(k_iter), rsi) // i = k_iter; test(rsi, rsi) // check i via logical AND. je(.SCONSIDKLEFT) // if i == 0, jump to code that // contains the k_left loop. label(.SLOOPKITER) // MAIN LOOP // ---------------------------------- iteration 0 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) // ---------------------------------- iteration 1 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) // ---------------------------------- iteration 2 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) // ---------------------------------- iteration 3 vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), ymm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) dec(rsi) // i -= 1; jne(.SLOOPKITER) // iterate again if i != 0. label(.SCONSIDKLEFT) mov(var(k_left), rsi) // i = k_left; test(rsi, rsi) // check i via logical AND. je(.SPOSTACCUM) // if i == 0, we're done; jump to end. // else, we prepare to enter k_left loop. label(.SLOOPKLEFT) // EDGE LOOP vmovups(mem(rbx, 0*32), xmm0) add(r10, rbx) // b += rs_b; vbroadcastss(mem(rax ), xmm2) add(r9, rax) // a += cs_a; vfmadd231ps(xmm0, xmm2, xmm4) dec(rsi) // i -= 1; jne(.SLOOPKLEFT) // iterate again if i != 0. label(.SPOSTACCUM) mov(var(alpha), rax) // load address of alpha mov(var(beta), rbx) // load address of beta vbroadcastss(mem(rax), xmm0) // load alpha and duplicate vbroadcastss(mem(rbx), xmm3) // load beta and duplicate vmulps(xmm0, xmm4, xmm4) // scale by alpha mov(var(cs_c), rsi) // load cs_c lea(mem(, rsi, 4), rsi) // rsi = cs_c * sizeof(float) // now avoid loading C if beta == 0 vxorps(ymm0, ymm0, ymm0) // set ymm0 to zero. vucomiss(xmm0, xmm3) // set ZF if beta == 0. je(.SBETAZERO) // if ZF = 1, jump to beta == 0 case cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORED) // jump to column storage case label(.SROWSTORED) vfmadd231ps(mem(rcx), xmm3, xmm4) vmovsd(xmm4, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORED) vshufps(imm(0x01), xmm4, xmm4, xmm9)//c1 vmovss(mem(rcx),xmm6) vfmadd231ps(xmm6, xmm3, xmm4) vmovss(xmm4,mem(rcx))//c0 vmovss(mem(rcx,rsi,1),xmm6) vfmadd231ps(xmm6, xmm3, xmm9) vmovss(xmm9,mem(rcx,rsi,1))//c1 jmp(.SDONE) // jump to end. label(.SBETAZERO) cmp(imm(4), rdi) // set ZF if (4*rs_c) == 4. jz(.SCOLSTORBZ) // jump to column storage case label(.SROWSTORBZ) vmovsd(xmm4, mem(rcx)) jmp(.SDONE) // jump to end. label(.SCOLSTORBZ) vshufps(imm(0x01), xmm4, xmm4, xmm9)//c1 vmovss(xmm4,mem(rcx))//c0 vmovss(xmm9,mem(rcx,rsi,1))//c1 label(.SDONE) end_asm( : // output operands (none) : // input operands [k_iter] "m" (k_iter), [k_left] "m" (k_left), [a] "m" (a), [rs_a] "m" (rs_a), [cs_a] "m" (cs_a), [b] "m" (b), [rs_b] "m" (rs_b), [cs_b] "m" (cs_b), [alpha] "m" (alpha), [beta] "m" (beta), [c] "m" (c), [rs_c] "m" (rs_c), [cs_c] "m" (cs_c)/*, [a_next] "m" (a_next), [b_next] "m" (b_next)*/ : // register clobber list "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "memory" ) } // ----------------------------------------------------------------------------- // NOTE: Normally, for any "?x1" kernel, we would call the reference kernel. // However, at least one other subconfiguration (zen) uses this kernel set, so // we need to be able to call a set of "?x1" kernels that we know will actually // exist regardless of which subconfiguration these kernels were used by. Thus, // the compromise employed here is to inline the reference kernel so it gets // compiled as part of the zen kernel set, and hence can unconditionally be // called by other kernels within that kernel set. #undef GENTFUNC #define GENTFUNC( ctype, ch, opname, mdim ) \ \ void PASTEMAC(ch,opname) \ ( \ conj_t conja, \ conj_t conjb, \ dim_t m, \ dim_t n, \ dim_t k, \ ctype* restrict alpha, \ ctype* restrict a, inc_t rs_a, inc_t cs_a, \ ctype* restrict b, inc_t rs_b, inc_t cs_b, \ ctype* restrict beta, \ ctype* restrict c, inc_t rs_c, inc_t cs_c, \ auxinfo_t* restrict data, \ cntx_t* restrict cntx \ ) \ { \ for ( dim_t i = 0; i < mdim; ++i ) \ { \ ctype* restrict ci = &c[ i*rs_c ]; \ ctype* restrict ai = &a[ i*rs_a ]; \ \ /* for ( dim_t j = 0; j < 1; ++j ) */ \ { \ ctype* restrict cij = ci /*[ j*cs_c ]*/ ; \ ctype* restrict bj = b /*[ j*cs_b ]*/ ; \ ctype ab; \ \ PASTEMAC(ch,set0s)( ab ); \ \ /* Perform a dot product to update the (i,j) element of c. */ \ for ( dim_t l = 0; l < k; ++l ) \ { \ ctype* restrict aij = &ai[ l*cs_a ]; \ ctype* restrict bij = &bj[ l*rs_b ]; \ \ PASTEMAC(ch,dots)( *aij, *bij, ab ); \ } \ \ /* If beta is one, add ab into c. If beta is zero, overwrite c with the result in ab. Otherwise, scale by beta and accumulate ab to c. */ \ if ( PASTEMAC(ch,eq1)( *beta ) ) \ { \ PASTEMAC(ch,axpys)( *alpha, ab, *cij ); \ } \ else if ( PASTEMAC(d,eq0)( *beta ) ) \ { \ PASTEMAC(ch,scal2s)( *alpha, ab, *cij ); \ } \ else \ { \ PASTEMAC(ch,axpbys)( *alpha, ab, *beta, *cij ); \ } \ } \ } \ } GENTFUNC( float, s, gemmsup_r_zen_ref_6x1, 6 ) GENTFUNC( float, s, gemmsup_r_zen_ref_5x1, 5 ) GENTFUNC( float, s, gemmsup_r_zen_ref_4x1, 4 ) GENTFUNC( float, s, gemmsup_r_zen_ref_3x1, 3 ) GENTFUNC( float, s, gemmsup_r_zen_ref_2x1, 2 ) GENTFUNC( float, s, gemmsup_r_zen_ref_1x1, 1 )