
Basic Machine Learning Subsystems

Contents
1. Introduction ... 1
1.1. Features .. 1
1.2. Design Patterns .. 1
1.3. Contributors ... 1
1.4. Peer Reviewers ... 1
2. Matmul .. 1
3. Max Pool ... 2
4. Im2Col ... 3
Bibliography ... 4

1. Introduction
As the quantity and complexity of operations commonly used in Machine Learning continues to
grow, the possibility for incorrectness increases. In order to manage that complexity, BMLS provides
formal, peer-reviewed, unit tested and benchmarked implementations of these operators. This paper
will provide the formal definitions for the subsystems provided by BMLS.

BMLS is not a machine learning library, it is a math library. It is intended for library implementers to
ensure correctness and performance in their code, such as for reverse-mode automatic
differentiation.

1.1. Features
1. Element-wise subsystems
2. Higher-order subsystems
3. Activations
4. Loss functions
5. Optimizer functions

1.2. Design Patterns
The inputs to BMLS subsystems are &[f32] or &mut [f32]. These slices are assumed to be row-major
tensors laid out in NCHW format, where N is the batch size, C is the channels, H is the height, and
W is the width. To ensure maximum performance, when iterating the W axis, the elements should
be sequential. This is the standard convention used by most tensor libraries.

BMLS provides the BMLSError type, which is returned from every subsystem. Subsystems can fail in
this way if the lengths of the provided slices is not what was expected, if the shape is invalid, or if
other parameters are invalid.

1.3. Contributors
1. Rylan W. Yancey

1.4. Peer Reviewers
1. J. Leon Ballentine

2. Matmul
The Matmul operator computes the dot product of two matrices A and B. The dot product of two
matrices is valid when A is an M x N matrix and B is an N x P matrix. This will produce an output C
with the shape M x P. To compute the dot product, apply the following formula:

∑
𝑀

𝑖=0
∑
𝑃

𝑗=0
𝐶𝑖,𝑗 =∑

𝑁

𝑘=0
𝐴𝑖,𝑘 ×𝐵𝑘,𝑗

2.1. Proposition 1
The definition of an element 𝐶𝑖,𝑗 is the vector dot product of row 𝐴𝑖 and column 𝐵𝑗. The gradient of
the vector product with respect to some factor is the factor it is multiplied by. We can extend this
formula for a given element 𝐴𝑖,𝑘 and 𝐵𝑘,𝑗 by summing the gradients of the vector-vector products.

𝛿𝐶
𝛿𝐴𝑖,𝑘

=∑
𝑃

𝑗=0
𝐵𝑘,𝑗

𝛿𝐶
𝛿𝐵𝑘,𝑗

=∑
𝑀

𝑖=0
𝐴𝑖,𝑘

2.2. Proposition 2
Because the definition of the gradient of 𝐶𝑖,𝑗 is defined in proposition 1, we can apply this formula
to each element in C, summing the gradients for each factor. Assuming that 𝛿𝐶 is an identity matrix,
the formula for the gradients w.r.t. A and B is defined as:

𝛿𝐶
𝛿𝐴

=∑
𝑀

𝑖=0
∑
𝑁

𝑘=0

𝛿𝐶
𝛿𝐴𝑖,𝑘

=∑
𝑃

𝑗=0
𝛿𝐶𝑖,𝑗 ×𝐵𝑇𝑘,𝑗

𝛿𝐶
𝛿𝐵

=∑
𝑁

𝑘=0
∑
𝑃

𝑗=0

𝛿𝐶
𝛿𝐵𝑘,𝑗

=∑
𝑀

𝑖=0
𝐴𝑇𝑖,𝑘 × 𝛿𝐶𝑖,𝑗

The gradient of some element 𝐴𝑖,𝑘 becomes the sum of its multiplications in the forward operation.
The same can be said for some element 𝐵𝑘,𝑗, which becomes the sum of its multiplications as well.

2.3. Proposition 3
Based on the definition of the gradient defined in proposition 2, we can conclude that 𝛿𝐶𝛿𝐴 is the
matrix dot product of 𝛿𝐶 and 𝐵𝑇 , and that 𝛿𝐶𝛿𝐵 is the matrix dot product of 𝐴𝑇 and 𝛿𝐶 .

𝛿𝐶
𝛿𝐴

= 𝛿𝐶 ⋅ 𝐵𝑇

𝛿𝐶
𝛿𝐵

= 𝐴𝑇 ⋅ 𝛿𝐶

3. Max Pool
The Max Pool operator finds the maximum value in a kernel, or subsection, of some matrix 𝐴. The
operation requires a kernel size, a stride, a height padding, and a width padding.

Figure 1: Max Pooling with kernel size [2, 2], stride [2, 2], hpad [0, 0], and wpad [0, 0]

In terms of BMLS data formats, bmls::max_pool will operate on the HW dimensions, treating it as a
HxW matrix. When N and/or C are greater than 1, the operation remains unchanged, but is
performed for NxC times, once for every HW. The resulting tensor 𝐵 will have the shape:

1. B.N: 𝐴.N
2. B.C: 𝐴.C
3. B.H: ((𝐴.H - kernel[0] + (hpad[0] + hpad[1])) / stride[0]) + 1
4. B.W: ((𝐴.W - kernel[1] + (wpad[0] + wpad[1])) / stride[1]) + 1

3.1. Gradient
Any given 𝐵𝑖,𝑗 is defined as the maximum value in the corresponding subsection of 𝐴. We can find
the index of the top-left corner of the subsection by applying the formula
𝐴𝑖 = ((𝐵𝑖 ∗ 𝑆ℎ) + 𝐾ℎ) − 𝑃ℎ0 and 𝐴𝑗 = ((𝐵𝑗 ∗ 𝑆𝑤) + 𝐾𝑤) − 𝑃𝑤0 . We can then iterate the
subsection using the kernel height and width.

∑
𝐵.ℎ

ℎ=0
∑
𝐵.𝑤

𝑤=0
𝐵ℎ,𝑤 = max

⎝
⎜⎛∑

𝐾ℎ

𝑘ℎ=0
∑
𝐾𝑤

𝑘𝑤=0
𝐴ℎ∗𝑆ℎ+𝑘ℎ−𝑃ℎ0,𝑤∗𝑆𝑤+𝑘𝑤−𝑃𝑤0

⎠
⎟⎞

The gradient of the max value function for a vector or a matrix (a.k.a. a subsection in our case) is 1 at
the index of the max value, and 0 otherwise. Therefore, assuming 𝛿𝐵 is an identity matrix, the value
of some element 𝛿𝐴𝑖,𝑗 is the number of times that element was the max value of a kernel. For
example, if an element was the max value for 3 kernels, the value would be 3. In the case of Figure 1,
the values at (0,1), (0,2), (3,1), and (2,2) would all be 1.

In the case that 𝛿𝐵 is an input gradient, we add the value 𝛿𝐵𝑖,𝑗 to the index of the maximum value
in the corresponding kernel. Take Figure 1 for example, assuming that the gradient w.r.t. the output
= [1,2,3,4], (0,1) would be 1, (0,2) = 2, (3,1) = 3, and (2,2) = 4.

4. Im2Col
The Im2Col operator converts a 4-dimensional (batched, NCHW) image 𝐴 into a 2-dimensional (NC)
column matrix 𝐵, where each column in 𝐵 corresponds to a kernel patch in 𝐴. The operation
requires a filter size, a stride, a height padding, and a width padding.

Figure 2: Im2Col with filter size [1, 1, 3, 3], stride [1, 1], hpad [0, 0], and wpad [0, 0],

Bibliography

	Introduction
	Features
	Design Patterns
	Contributors
	Peer Reviewers

	Matmul
	Max Pool
	Im2Col
	Bibliography

