use anyhow::Result; use border_core::{ generic_replay_buffer::{ SimpleReplayBuffer, SimpleReplayBufferConfig, SimpleStepProcessor, SimpleStepProcessorConfig, }, record::{AggregateRecorder, Record}, Agent, Configurable, DefaultEvaluator, Env as _, Evaluator as _, ReplayBufferBase, StepProcessor, Trainer, TrainerConfig, }; use border_derive::BatchBase; use border_py_gym_env::{ util::{arrayd_to_tensor, tensor_to_arrayd}, ArrayObsFilter, ContinuousActFilter, GymActFilter, GymEnv, GymEnvConfig, GymObsFilter, }; use border_tch_agent::{ mlp::{Mlp, Mlp2, MlpConfig}, opt::OptimizerConfig, sac::{ActorConfig, CriticConfig, Sac, SacConfig}, TensorBatch, }; use border_tensorboard::TensorboardRecorder; use clap::Parser; //use csv::WriterBuilder; use border_mlflow_tracking::MlflowTrackingClient; use ndarray::{ArrayD, IxDyn}; use serde::Serialize; use std::convert::TryFrom; use tch::Tensor; const DIM_OBS: i64 = 8; const DIM_ACT: i64 = 2; const LR_ACTOR: f64 = 3e-4; const LR_CRITIC: f64 = 3e-4; const BATCH_SIZE: usize = 128; const WARMUP_PERIOD: usize = 1000; const OPT_INTERVAL: usize = 1; const MAX_OPTS: usize = 200_000; const EVAL_INTERVAL: usize = 10_000; const REPLAY_BUFFER_CAPACITY: usize = 100_000; const N_EPISODES_PER_EVAL: usize = 5; const MODEL_DIR: &str = "./border/examples/gym/model/tch/sac_lunarlander_cont"; fn cuda_if_available() -> tch::Device { tch::Device::cuda_if_available() } mod obs_act_types { use super::*; type PyObsDtype = f32; #[derive(Clone, Debug)] pub struct Obs(ArrayD); impl border_core::Obs for Obs { fn dummy(_n: usize) -> Self { Self(ArrayD::zeros(IxDyn(&[0]))) } fn len(&self) -> usize { self.0.shape()[0] } } impl From> for Obs { fn from(obs: ArrayD) -> Self { Obs(obs) } } impl From for Tensor { fn from(obs: Obs) -> Tensor { Tensor::try_from(&obs.0).unwrap() } } #[derive(Clone, BatchBase)] pub struct ObsBatch(TensorBatch); impl From for ObsBatch { fn from(obs: Obs) -> Self { let tensor = obs.into(); Self(TensorBatch::from_tensor(tensor)) } } #[derive(Clone, Debug)] pub struct Act(ArrayD); impl border_core::Act for Act {} impl From for ArrayD { fn from(value: Act) -> Self { value.0 } } impl From for Act { fn from(t: Tensor) -> Self { Self(tensor_to_arrayd(t, true)) } } // Required by Sac impl From for Tensor { fn from(value: Act) -> Self { arrayd_to_tensor::<_, f32>(value.0, true) } } #[derive(BatchBase)] pub struct ActBatch(TensorBatch); impl From for ActBatch { fn from(act: Act) -> Self { let tensor = act.into(); Self(TensorBatch::from_tensor(tensor)) } } pub type ObsFilter = ArrayObsFilter; pub type ActFilter = ContinuousActFilter; pub type Env = GymEnv; pub type StepProc = SimpleStepProcessor; pub type ReplayBuffer = SimpleReplayBuffer; pub type Evaluator = DefaultEvaluator>; } use obs_act_types::*; mod config { use serde::Serialize; use super::*; #[derive(Serialize)] pub struct SacLunarLanderConfig { pub trainer_config: TrainerConfig, pub replay_buffer_config: SimpleReplayBufferConfig, pub agent_config: SacConfig, } pub fn env_config() -> GymEnvConfig { GymEnvConfig::::default() .name("LunarLanderContinuous-v2".to_string()) .obs_filter_config(ObsFilter::default_config()) .act_filter_config(ActFilter::default_config()) } pub fn trainer_config(max_opts: usize, eval_interval: usize) -> TrainerConfig { TrainerConfig::default() .max_opts(max_opts) .opt_interval(OPT_INTERVAL) .eval_interval(eval_interval) .record_agent_info_interval(EVAL_INTERVAL) .record_compute_cost_interval(EVAL_INTERVAL) .flush_record_interval(EVAL_INTERVAL) .save_interval(EVAL_INTERVAL) .warmup_period(WARMUP_PERIOD) .model_dir(MODEL_DIR) } pub fn agent_config(in_dim: i64, out_dim: i64) -> SacConfig { let device = cuda_if_available(); let actor_config = ActorConfig::default() .opt_config(OptimizerConfig::Adam { lr: LR_ACTOR }) .out_dim(out_dim) .pi_config(MlpConfig::new(in_dim, vec![64, 64], out_dim, false)); let critic_config = CriticConfig::default() .opt_config(OptimizerConfig::Adam { lr: LR_CRITIC }) .q_config(MlpConfig::new(in_dim + out_dim, vec![64, 64], 1, false)); SacConfig::default() .batch_size(BATCH_SIZE) .actor_config(actor_config) .critic_config(critic_config) .device(device) } } #[derive(Debug, Serialize)] struct LunarlanderRecord { episode: usize, step: usize, reward: f32, obs: Vec, act: Vec, } impl TryFrom<&Record> for LunarlanderRecord { type Error = anyhow::Error; fn try_from(record: &Record) -> Result { Ok(Self { episode: record.get_scalar("episode")? as _, step: record.get_scalar("step")? as _, reward: record.get_scalar("reward")?, obs: record.get_array1("obs")?.to_vec(), act: record.get_array1("act")?.to_vec(), }) } } mod utils { use super::*; pub fn create_recorder( args: &Args, config: &config::SacLunarLanderConfig, ) -> Result> { match args.mlflow { true => { let client = MlflowTrackingClient::new("http://localhost:8080").set_experiment_id("Gym")?; let recorder_run = client.create_recorder("")?; recorder_run.log_params(&config)?; recorder_run.set_tag("env", "lunarlander")?; recorder_run.set_tag("algo", "sac")?; recorder_run.set_tag("backend", "tch")?; Ok(Box::new(recorder_run)) } false => Ok(Box::new(TensorboardRecorder::new(MODEL_DIR))), } } } /// Train/eval SAC agent in lunarlander environment #[derive(Parser, Debug)] #[command(version, about)] struct Args { /// Train SAC agent, not evaluate #[arg(short, long, default_value_t = false)] train: bool, /// Evaluate SAC agent, not train #[arg(short, long, default_value_t = false)] eval: bool, /// Log metrics with MLflow #[arg(short, long, default_value_t = false)] mlflow: bool, } fn train(args: &Args, max_opts: usize) -> Result<()> { let env_config = config::env_config(); let trainer_config = config::trainer_config(max_opts, EVAL_INTERVAL); let step_proc_config = SimpleStepProcessorConfig {}; let replay_buffer_config = SimpleReplayBufferConfig::default().capacity(REPLAY_BUFFER_CAPACITY); let agent_config = config::agent_config(DIM_OBS, DIM_ACT); let config = config::SacLunarLanderConfig { agent_config: agent_config.clone(), replay_buffer_config: replay_buffer_config.clone(), trainer_config, }; let mut recorder = utils::create_recorder(&args, &config)?; let mut trainer = Trainer::build(config.trainer_config.clone()); let env = Env::build(&env_config, 0)?; let step_proc = StepProc::build(&step_proc_config); let mut agent = Sac::build(config.agent_config); let mut buffer = ReplayBuffer::build(&replay_buffer_config); let mut evaluator = Evaluator::new(&env_config, 0, N_EPISODES_PER_EVAL)?; trainer.train( env, step_proc, &mut agent, &mut buffer, &mut recorder, &mut evaluator, )?; Ok(()) } fn eval(render: bool) -> Result<()> { let model_dir = MODEL_DIR.to_owned() + "/best"; let env_config = { let mut env_config = config::env_config(); if render { env_config = env_config .render_mode(Some("human".to_string())) .set_wait_in_millis(10); } env_config }; let mut agent = { let mut agent = Sac::build(config::agent_config(DIM_OBS, DIM_ACT)); agent.load_params(model_dir)?; agent.eval(); agent }; let _ = Evaluator::new(&env_config, 0, 5)?.evaluate(&mut agent); Ok(()) } fn main() -> Result<()> { env_logger::Builder::from_env(env_logger::Env::default().default_filter_or("info")).init(); tch::manual_seed(42); let args = Args::parse(); if args.eval { eval(true)?; } else if args.train { train(&args, MAX_OPTS)?; } else { train(&args, MAX_OPTS)?; eval(true)?; } Ok(()) }