import gymnasium as gym
import numpy as np
from collections import deque
from PIL import Image
from multiprocessing import Process, Pipe

# atari_wrappers.py
class NoopResetEnv(gym.Wrapper):
    def __init__(self, env, noop_max=30):
        """Sample initial states by taking random number of no-ops on reset.
        No-op is assumed to be action 0.
        """
        gym.Wrapper.__init__(self, env)
        self.noop_max = noop_max
        self.override_num_noops = None
        assert env.unwrapped.get_action_meanings()[0] == 'NOOP'

    def reset(self):
        """ Do no-op action for a number of steps in [1, noop_max]."""
        self.env.reset()
        if self.override_num_noops is not None:
            noops = self.override_num_noops
        else:
            noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101
        assert noops > 0
        obs = None
        for _ in range(noops):
            obs, _, done, _ = self.env.step(0)
            if done:
                obs = self.env.reset()
        return obs

class FireResetEnv(gym.Wrapper):
    def __init__(self, env):
        """Take action on reset for environments that are fixed until firing."""
        gym.Wrapper.__init__(self, env)
        assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
        assert len(env.unwrapped.get_action_meanings()) >= 3

    def reset(self):
        self.env.reset()
        obs, _, done, _ = self.env.step(1)
        if done:
            self.env.reset()
        obs, _, done, _ = self.env.step(2)
        if done:
            self.env.reset()
        return obs

class ImageSaver(gym.Wrapper):
    def __init__(self, env, img_path, rank):
        gym.Wrapper.__init__(self, env)
        self._cnt = 0
        self._img_path = img_path
        self._rank = rank

    def step(self, action):
        step_result = self.env.step(action)
        obs, _, _, _ = step_result
        img = Image.fromarray(obs, 'RGB')
        img.save('%s/out%d-%05d.png' % (self._img_path, self._rank, self._cnt))
        self._cnt += 1
        return step_result

class EpisodicLifeEnv(gym.Wrapper):
    def __init__(self, env):
        """Make end-of-life == end-of-episode, but only reset on true game over.
        Done by DeepMind for the DQN and co. since it helps value estimation.
        """
        gym.Wrapper.__init__(self, env)
        self.lives = 0
        self.was_real_done  = True

    def step(self, action):
        obs, reward, done, info = self.env.step(action)
        self.was_real_done = done
        # check current lives, make loss of life terminal,
        # then update lives to handle bonus lives
        lives = self.env.unwrapped.ale.lives()
        if lives < self.lives and lives > 0:
            # for Qbert somtimes we stay in lives == 0 condtion for a few frames
            # so its important to keep lives > 0, so that we only reset once
            # the environment advertises done.
            done = True
        self.lives = lives
        return obs, reward, done, info

    def reset(self):
        """Reset only when lives are exhausted.
        This way all states are still reachable even though lives are episodic,
        and the learner need not know about any of this behind-the-scenes.
        """
        if self.was_real_done:
            obs = self.env.reset()
        else:
            # no-op step to advance from terminal/lost life state
            obs, _, _, _ = self.env.step(0)
        self.lives = self.env.unwrapped.ale.lives()
        return obs

class MaxAndSkipEnv(gym.Wrapper):
    def __init__(self, env, skip=4):
        """Return only every `skip`-th frame"""
        gym.Wrapper.__init__(self, env)
        # most recent raw observations (for max pooling across time steps)
        self._obs_buffer = deque(maxlen=2)
        self._skip       = skip

    def step(self, action):
        """Repeat action, sum reward, and max over last observations."""
        total_reward = 0.0
        done = None
        for _ in range(self._skip):
            obs, reward, done, info = self.env.step(action)
            self._obs_buffer.append(obs)
            total_reward += reward
            if done:
                break
        max_frame = np.max(np.stack(self._obs_buffer), axis=0)

        return max_frame, total_reward, done, info

    def reset(self):
        """Clear past frame buffer and init. to first obs. from inner env."""
        self._obs_buffer.clear()
        obs = self.env.reset()
        self._obs_buffer.append(obs)
        return obs

class ClipRewardEnv(gym.RewardWrapper):
    def reward(self, reward):
        """Bin reward to {+1, 0, -1} by its sign."""
        return np.sign(reward)

class WarpFrame(gym.ObservationWrapper):
    def __init__(self, env):
        """Warp frames to 84x84 as done in the Nature paper and later work."""
        gym.ObservationWrapper.__init__(self, env)
        self.res = 84
        self.observation_space = gym.spaces.Box(low=0, high=255, shape=(self.res, self.res, 1), dtype='uint8')

    def observation(self, obs):
        frame = np.dot(obs.astype('float32'), np.array([0.299, 0.587, 0.114], 'float32'))
        frame = np.array(Image.fromarray(frame).resize((self.res, self.res),
            resample=Image.BILINEAR), dtype=np.uint8)
        return frame.reshape((self.res, self.res, 1))

class FrameStack(gym.Wrapper):
    def __init__(self, env, k):
        """Buffer observations and stack across channels (last axis)."""
        gym.Wrapper.__init__(self, env)
        self.k = k
        self.frames = deque([], maxlen=k)
        shp = env.observation_space.shape
        assert shp[2] == 1  # can only stack 1-channel frames
        self.observation_space = gym.spaces.Box(low=0, high=255, shape=(shp[0], shp[1], k), dtype='uint8')

    def reset(self):
        """Clear buffer and re-fill by duplicating the first observation."""
        ob = self.env.reset()
        for _ in range(self.k): self.frames.append(ob)
        return self.observation()

    def step(self, action):
        ob, reward, done, info = self.env.step(action)
        self.frames.append(ob)
        return self.observation(), reward, done, info

    def observation(self):
        assert len(self.frames) == self.k
        return np.concatenate(self.frames, axis=2)

def wrap_deepmind(env, episode_life=True, clip_rewards=True):
    """Configure environment for DeepMind-style Atari.

    Note: this does not include frame stacking!"""
    assert 'NoFrameskip' in env.spec.id  # required for DeepMind-style skip
    if episode_life:
        env = EpisodicLifeEnv(env)
    env = NoopResetEnv(env, noop_max=30)
    env = MaxAndSkipEnv(env, skip=4)
    if 'FIRE' in env.unwrapped.get_action_meanings():
        env = FireResetEnv(env)
    env = WarpFrame(env)
    if clip_rewards:
        env = ClipRewardEnv(env)
    return env

# envs.py
def make_env(env_id, img_dir, atari_wrapper, train, seed, rank):
    def _thunk():
        env = gym.make(env_id)
        env.seed(seed + rank)
        if img_dir is not None:
            env = ImageSaver(env, img_dir, rank)
        if atari_wrapper:
            env = wrap_deepmind(env, episode_life=train, clip_rewards=train)
            env = WrapPyTorch(env)
        return env

    return _thunk

def make_env_single_proc(env_id, atari_wrapper, train):
    env = gym.make(env_id)
    if atari_wrapper:
        env = wrap_deepmind(env, episode_life=train, clip_rewards=train)
        env = WrapPyTorch(env)

    return env

class WrapPyTorch(gym.ObservationWrapper):
    def __init__(self, env=None):
        super(WrapPyTorch, self).__init__(env)
        self.observation_space = gym.spaces.Box(0.0, 1.0, [1, 84, 84], dtype='float32')

    def observation(self, observation):
        return observation.transpose(2, 0, 1)
    
# vecenv.py
class VecEnv(object):
    """
    Vectorized environment base class
    """
    def step(self, vac):
        """
        Apply sequence of actions to sequence of environments
        actions -> (observations, rewards, news)

        where 'news' is a boolean vector indicating whether each element is new.
        """
        raise NotImplementedError
    def reset(self):
        """
        Reset all environments
        """
        raise NotImplementedError
    def close(self):
        pass

# subproc_vec_env.py
def worker(remote, env_fn_wrapper):
    env = env_fn_wrapper.x()
    while True:
        cmd, data = remote.recv()
        if cmd == 'step':
            ob, reward, done, info = env.step(data)
            if done:
                ob = env.reset()
            remote.send((ob, reward, done, info))
        elif cmd == 'reset':
            ob = env.reset()
            remote.send(ob)
        elif cmd == 'close':
            remote.close()
            break
        elif cmd == 'get_spaces':
            remote.send((env.action_space, env.observation_space))
        elif cmd == 'none':
            remote.send(None)
        else:
            raise NotImplementedError

class CloudpickleWrapper(object):
    """
    Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
    """
    def __init__(self, x):
        self.x = x
    def __getstate__(self):
        import cloudpickle
        return cloudpickle.dumps(self.x)
    def __setstate__(self, ob):
        import pickle
        self.x = pickle.loads(ob)

class SubprocVecEnv(VecEnv):
    def __init__(self, env_fns):
        """
        envs: list of gym environments to run in subprocesses
        """
        nenvs = len(env_fns)
        self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])        
        self.ps = [Process(target=worker, args=(work_remote, CloudpickleWrapper(env_fn))) 
            for (work_remote, env_fn) in zip(self.work_remotes, env_fns)]
        for p in self.ps:
            p.start()
        self.remotes[0].send(('get_spaces', None))
        self.action_space, self.observation_space = self.remotes[0].recv()

    def step(self, actions):
        for remote, action in zip(self.remotes, actions):
            remote.send(('step', action))
        results = [remote.recv() for remote in self.remotes]
        obs, rews, dones, infos = zip(*results)

        # The original implenentation of the vectorized environments
        # returns observations as a stacked ndarray. Here, the code
        # is modified to return a python list of objects.
        # return np.stack(obs), np.stack(rews), np.stack(dones), infos
        return list(obs), np.stack(rews), np.stack(dones), infos

    def reset(self, mask=None):
        """ `mask` is `None` or `List[float]`.
        """
        if mask is None:
            for remote in self.remotes:
                remote.send(('reset', None))
        else:
            for mask_i, remote in zip(mask, self.remotes):
                if mask_i == 1.0:
                    remote.send(('reset', None))
                else:
                    remote.send(('none', None)) # do nothing
        # The original implenentation of the vectorized environments
        # returns observations as a stacked ndarray. Here, the code
        # is modified to return a python list of objects.
        # return np.stack([remote.recv() for remote in self.remotes])
        obs = [remote.recv() for remote in self.remotes]
        return obs

    def close(self):
        for remote in self.remotes:
            remote.send(('close', None))
        for p in self.ps:
            p.join()

    @property
    def num_envs(self):
        return len(self.remotes)

# Create the environment.
def make(env_name, atari_wrapper, train, num_processes):
    img_dir=None
    import cv2 # workaround for importing cv2 in subprocesses on mac
    envs = SubprocVecEnv([
        make_env(env_name, img_dir, atari_wrapper, train, 42, i) for i in range(num_processes)
    ])
    return envs

if __name__ == "__main__":
    env = make_env_single_proc("PongNoFrameskip-v4", True, True)
    env.reset()
    step = env.step(0)
    Image.fromarray(step[0].reshape([84, 84])).save("./test.png")