/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include "../fipsmodule/cipher/internal.h" #include "internal.h" #include "../internal.h" #include "../test/abi_test.h" #include "../test/file_test.h" #include "../test/test_util.h" #include "../test/wycheproof_util.h" // kLimitedImplementation indicates that tests that assume a generic AEAD // interface should not be performed. For example, the key-wrap AEADs only // handle inputs that are a multiple of eight bytes in length and the TLS CBC // AEADs have the concept of “direction”. constexpr uint32_t kLimitedImplementation = 1 << 0; // kCanTruncateTags indicates that the AEAD supports truncatating tags to // arbitrary lengths. constexpr uint32_t kCanTruncateTags = 1 << 1; // kVariableNonce indicates that the AEAD supports a variable-length nonce. constexpr uint32_t kVariableNonce = 1 << 2; // kNondeterministic indicates that the AEAD performs randomised encryption thus // one cannot assume that encrypting the same data will result in the same // ciphertext. constexpr uint32_t kNondeterministic = 1 << 7; // RequiresADLength encodes an AD length requirement into flags. constexpr uint32_t RequiresADLength(size_t length) { // If we had a more recent C++ version we could assert that the length is // sufficiently small with: // // if (length >= 16) { // __builtin_unreachable(); // } return (length & 0xf) << 3; } // RequiredADLength returns the AD length requirement encoded in |flags|, or // zero if there isn't one. constexpr size_t RequiredADLength(uint32_t flags) { return (flags >> 3) & 0xf; } constexpr uint32_t RequiresMinimumTagLength(size_t length) { // See above for statically checking the size at compile time with future C++ // versions. return (length & 0xf) << 8; } constexpr size_t MinimumTagLength(uint32_t flags) { return ((flags >> 8) & 0xf) == 0 ? 1 : ((flags >> 8) & 0xf); } struct KnownAEAD { const char name[40]; const EVP_AEAD *(*func)(void); const char *test_vectors; uint32_t flags; }; static const struct KnownAEAD kAEADs[] = { {"AES_128_GCM", EVP_aead_aes_128_gcm, "aes_128_gcm_tests.txt", kCanTruncateTags | kVariableNonce}, {"AES_128_GCM_NIST", EVP_aead_aes_128_gcm, "nist_cavp/aes_128_gcm.txt", kCanTruncateTags | kVariableNonce}, {"AES_192_GCM", EVP_aead_aes_192_gcm, "aes_192_gcm_tests.txt", kCanTruncateTags | kVariableNonce}, {"AES_256_GCM", EVP_aead_aes_256_gcm, "aes_256_gcm_tests.txt", kCanTruncateTags | kVariableNonce}, {"AES_256_GCM_NIST", EVP_aead_aes_256_gcm, "nist_cavp/aes_256_gcm.txt", kCanTruncateTags | kVariableNonce}, {"AES_128_GCM_SIV", EVP_aead_aes_128_gcm_siv, "aes_128_gcm_siv_tests.txt", 0}, {"AES_256_GCM_SIV", EVP_aead_aes_256_gcm_siv, "aes_256_gcm_siv_tests.txt", 0}, {"AES_128_GCM_RandomNonce", EVP_aead_aes_128_gcm_randnonce, "aes_128_gcm_randnonce_tests.txt", kNondeterministic | kCanTruncateTags | RequiresMinimumTagLength(13)}, {"AES_256_GCM_RandomNonce", EVP_aead_aes_256_gcm_randnonce, "aes_256_gcm_randnonce_tests.txt", kNondeterministic | kCanTruncateTags | RequiresMinimumTagLength(13)}, {"ChaCha20Poly1305", EVP_aead_chacha20_poly1305, "chacha20_poly1305_tests.txt", kCanTruncateTags}, {"XChaCha20Poly1305", EVP_aead_xchacha20_poly1305, "xchacha20_poly1305_tests.txt", kCanTruncateTags}, {"AES_128_CBC_SHA1_TLS", EVP_aead_aes_128_cbc_sha1_tls, "aes_128_cbc_sha1_tls_tests.txt", kLimitedImplementation | RequiresADLength(11)}, {"AES_128_CBC_SHA1_TLSImplicitIV", EVP_aead_aes_128_cbc_sha1_tls_implicit_iv, "aes_128_cbc_sha1_tls_implicit_iv_tests.txt", kLimitedImplementation | RequiresADLength(11)}, {"AES_256_CBC_SHA1_TLS", EVP_aead_aes_256_cbc_sha1_tls, "aes_256_cbc_sha1_tls_tests.txt", kLimitedImplementation | RequiresADLength(11)}, {"AES_256_CBC_SHA1_TLSImplicitIV", EVP_aead_aes_256_cbc_sha1_tls_implicit_iv, "aes_256_cbc_sha1_tls_implicit_iv_tests.txt", kLimitedImplementation | RequiresADLength(11)}, {"DES_EDE3_CBC_SHA1_TLS", EVP_aead_des_ede3_cbc_sha1_tls, "des_ede3_cbc_sha1_tls_tests.txt", kLimitedImplementation | RequiresADLength(11)}, {"DES_EDE3_CBC_SHA1_TLSImplicitIV", EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv, "des_ede3_cbc_sha1_tls_implicit_iv_tests.txt", kLimitedImplementation | RequiresADLength(11)}, {"AES_128_CTR_HMAC_SHA256", EVP_aead_aes_128_ctr_hmac_sha256, "aes_128_ctr_hmac_sha256.txt", kCanTruncateTags}, {"AES_256_CTR_HMAC_SHA256", EVP_aead_aes_256_ctr_hmac_sha256, "aes_256_ctr_hmac_sha256.txt", kCanTruncateTags}, {"AES_128_CCM_BLUETOOTH", EVP_aead_aes_128_ccm_bluetooth, "aes_128_ccm_bluetooth_tests.txt", 0}, {"AES_128_CCM_BLUETOOTH_8", EVP_aead_aes_128_ccm_bluetooth_8, "aes_128_ccm_bluetooth_8_tests.txt", 0}, }; class PerAEADTest : public testing::TestWithParam { public: const EVP_AEAD *aead() { return GetParam().func(); } }; INSTANTIATE_TEST_SUITE_P(All, PerAEADTest, testing::ValuesIn(kAEADs), [](const testing::TestParamInfo ¶ms) -> std::string { return params.param.name; }); // Tests an AEAD against a series of test vectors from a file, using the // FileTest format. As an example, here's a valid test case: // // KEY: 5a19f3173586b4c42f8412f4d5a786531b3231753e9e00998aec12fda8df10e4 // NONCE: 978105dfce667bf4 // IN: 6a4583908d // AD: b654574932 // CT: 5294265a60 // TAG: 1d45758621762e061368e68868e2f929 TEST_P(PerAEADTest, TestVector) { std::string test_vectors = "crypto/cipher_extra/test/"; test_vectors += GetParam().test_vectors; FileTestGTest(test_vectors.c_str(), [&](FileTest *t) { std::vector key, nonce, in, ad, ct, tag; ASSERT_TRUE(t->GetBytes(&key, "KEY")); ASSERT_TRUE(t->GetBytes(&nonce, "NONCE")); ASSERT_TRUE(t->GetBytes(&in, "IN")); ASSERT_TRUE(t->GetBytes(&ad, "AD")); ASSERT_TRUE(t->GetBytes(&ct, "CT")); ASSERT_TRUE(t->GetBytes(&tag, "TAG")); size_t tag_len = tag.size(); if (t->HasAttribute("TAG_LEN")) { // Legacy AEADs are MAC-then-encrypt and may include padding in the TAG // field. TAG_LEN contains the actual size of the digest in that case. std::string tag_len_str; ASSERT_TRUE(t->GetAttribute(&tag_len_str, "TAG_LEN")); tag_len = strtoul(tag_len_str.c_str(), nullptr, 10); ASSERT_TRUE(tag_len); } bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_seal)); std::vector out(in.size() + EVP_AEAD_max_overhead(aead())); if (!t->HasAttribute("NO_SEAL") && !(GetParam().flags & kNondeterministic)) { size_t out_len; ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(), nonce.data(), nonce.size(), in.data(), in.size(), ad.data(), ad.size())); out.resize(out_len); ASSERT_EQ(out.size(), ct.size() + tag.size()); EXPECT_EQ(Bytes(ct), Bytes(out.data(), ct.size())); EXPECT_EQ(Bytes(tag), Bytes(out.data() + ct.size(), tag.size())); } else { out.resize(ct.size() + tag.size()); OPENSSL_memcpy(out.data(), ct.data(), ct.size()); OPENSSL_memcpy(out.data() + ct.size(), tag.data(), tag.size()); } // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be // reset after each operation. ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); std::vector out2(out.size()); size_t out2_len; int ret = EVP_AEAD_CTX_open(ctx.get(), out2.data(), &out2_len, out2.size(), nonce.data(), nonce.size(), out.data(), out.size(), ad.data(), ad.size()); if (t->HasAttribute("FAILS")) { ASSERT_FALSE(ret) << "Decrypted bad data."; ERR_clear_error(); return; } ASSERT_TRUE(ret) << "Failed to decrypt."; out2.resize(out2_len); EXPECT_EQ(Bytes(in), Bytes(out2)); // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be // reset after each operation. ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); // Garbage at the end isn't ignored. out.push_back(0); out2.resize(out.size()); EXPECT_FALSE(EVP_AEAD_CTX_open( ctx.get(), out2.data(), &out2_len, out2.size(), nonce.data(), nonce.size(), out.data(), out.size(), ad.data(), ad.size())) << "Decrypted bad data with trailing garbage."; ERR_clear_error(); // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be // reset after each operation. ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); // Verify integrity is checked. out[0] ^= 0x80; out.resize(out.size() - 1); out2.resize(out.size()); EXPECT_FALSE(EVP_AEAD_CTX_open( ctx.get(), out2.data(), &out2_len, out2.size(), nonce.data(), nonce.size(), out.data(), out.size(), ad.data(), ad.size())) << "Decrypted bad data with corrupted byte."; ERR_clear_error(); }); } TEST_P(PerAEADTest, TestExtraInput) { const KnownAEAD &aead_config = GetParam(); if (!aead()->seal_scatter_supports_extra_in) { return; } const std::string test_vectors = "crypto/cipher_extra/test/" + std::string(aead_config.test_vectors); FileTestGTest(test_vectors.c_str(), [&](FileTest *t) { if (t->HasAttribute("NO_SEAL") || t->HasAttribute("FAILS") || (aead_config.flags & kNondeterministic)) { t->SkipCurrent(); return; } std::vector key, nonce, in, ad, ct, tag; ASSERT_TRUE(t->GetBytes(&key, "KEY")); ASSERT_TRUE(t->GetBytes(&nonce, "NONCE")); ASSERT_TRUE(t->GetBytes(&in, "IN")); ASSERT_TRUE(t->GetBytes(&ad, "AD")); ASSERT_TRUE(t->GetBytes(&ct, "CT")); ASSERT_TRUE(t->GetBytes(&tag, "TAG")); bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key.data(), key.size(), tag.size(), nullptr)); std::vector out_tag(EVP_AEAD_max_overhead(aead()) + in.size()); std::vector out(in.size()); for (size_t extra_in_size = 0; extra_in_size < in.size(); extra_in_size++) { size_t tag_bytes_written; SCOPED_TRACE(extra_in_size); ASSERT_TRUE(EVP_AEAD_CTX_seal_scatter( ctx.get(), out.data(), out_tag.data(), &tag_bytes_written, out_tag.size(), nonce.data(), nonce.size(), in.data(), in.size() - extra_in_size, in.data() + in.size() - extra_in_size, extra_in_size, ad.data(), ad.size())); ASSERT_EQ(tag_bytes_written, extra_in_size + tag.size()); memcpy(out.data() + in.size() - extra_in_size, out_tag.data(), extra_in_size); EXPECT_EQ(Bytes(ct), Bytes(out.data(), in.size())); EXPECT_EQ(Bytes(tag), Bytes(out_tag.data() + extra_in_size, tag_bytes_written - extra_in_size)); } }); } TEST_P(PerAEADTest, TestVectorScatterGather) { std::string test_vectors = "crypto/cipher_extra/test/"; const KnownAEAD &aead_config = GetParam(); test_vectors += aead_config.test_vectors; FileTestGTest(test_vectors.c_str(), [&](FileTest *t) { std::vector key, nonce, in, ad, ct, tag; ASSERT_TRUE(t->GetBytes(&key, "KEY")); ASSERT_TRUE(t->GetBytes(&nonce, "NONCE")); ASSERT_TRUE(t->GetBytes(&in, "IN")); ASSERT_TRUE(t->GetBytes(&ad, "AD")); ASSERT_TRUE(t->GetBytes(&ct, "CT")); ASSERT_TRUE(t->GetBytes(&tag, "TAG")); size_t tag_len = tag.size(); if (t->HasAttribute("TAG_LEN")) { // Legacy AEADs are MAC-then-encrypt and may include padding in the TAG // field. TAG_LEN contains the actual size of the digest in that case. std::string tag_len_str; ASSERT_TRUE(t->GetAttribute(&tag_len_str, "TAG_LEN")); tag_len = strtoul(tag_len_str.c_str(), nullptr, 10); ASSERT_TRUE(tag_len); } bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_seal)); std::vector out(in.size()); std::vector out_tag(EVP_AEAD_max_overhead(aead())); if (!t->HasAttribute("NO_SEAL") && !(aead_config.flags & kNondeterministic)) { size_t out_tag_len; ASSERT_TRUE(EVP_AEAD_CTX_seal_scatter( ctx.get(), out.data(), out_tag.data(), &out_tag_len, out_tag.size(), nonce.data(), nonce.size(), in.data(), in.size(), nullptr, 0, ad.data(), ad.size())); out_tag.resize(out_tag_len); ASSERT_EQ(out.size(), ct.size()); ASSERT_EQ(out_tag.size(), tag.size()); EXPECT_EQ(Bytes(ct), Bytes(out.data(), ct.size())); EXPECT_EQ(Bytes(tag), Bytes(out_tag.data(), tag.size())); } else { out.resize(ct.size()); out_tag.resize(tag.size()); OPENSSL_memcpy(out.data(), ct.data(), ct.size()); OPENSSL_memcpy(out_tag.data(), tag.data(), tag.size()); } // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be // reset after each operation. ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); std::vector out2(out.size()); int ret = EVP_AEAD_CTX_open_gather( ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size()); // Skip decryption for AEADs that don't implement open_gather(). if (!ret) { int err = ERR_peek_error(); if (ERR_GET_LIB(err) == ERR_LIB_CIPHER && ERR_GET_REASON(err) == CIPHER_R_CTRL_NOT_IMPLEMENTED) { t->SkipCurrent(); return; } } if (t->HasAttribute("FAILS")) { ASSERT_FALSE(ret) << "Decrypted bad data"; ERR_clear_error(); return; } ASSERT_TRUE(ret) << "Failed to decrypt: " << ERR_reason_error_string(ERR_get_error()); EXPECT_EQ(Bytes(in), Bytes(out2)); // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be // reset after each operation. ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); // Garbage at the end isn't ignored. out_tag.push_back(0); out2.resize(out.size()); EXPECT_FALSE(EVP_AEAD_CTX_open_gather( ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size())) << "Decrypted bad data with trailing garbage."; ERR_clear_error(); // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be // reset after each operation. ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); // Verify integrity is checked. out_tag[0] ^= 0x80; out_tag.resize(out_tag.size() - 1); out2.resize(out.size()); EXPECT_FALSE(EVP_AEAD_CTX_open_gather( ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size())) << "Decrypted bad data with corrupted byte."; ERR_clear_error(); ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); // Check edge case for tag length. EXPECT_FALSE(EVP_AEAD_CTX_open_gather( ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), out.size(), out_tag.data(), 0, ad.data(), ad.size())) << "Decrypted bad data with corrupted byte."; ERR_clear_error(); }); } TEST_P(PerAEADTest, CleanupAfterInitFailure) { uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; OPENSSL_memset(key, 0, sizeof(key)); const size_t key_len = EVP_AEAD_key_length(aead()); ASSERT_GE(sizeof(key), key_len); EVP_AEAD_CTX ctx; ASSERT_FALSE(EVP_AEAD_CTX_init( &ctx, aead(), key, key_len, 9999 /* a silly tag length to trigger an error */, NULL /* ENGINE */)); ERR_clear_error(); // Running a second, failed _init should not cause a memory leak. ASSERT_FALSE(EVP_AEAD_CTX_init( &ctx, aead(), key, key_len, 9999 /* a silly tag length to trigger an error */, NULL /* ENGINE */)); ERR_clear_error(); // Calling _cleanup on an |EVP_AEAD_CTX| after a failed _init should be a // no-op. EVP_AEAD_CTX_cleanup(&ctx); } TEST_P(PerAEADTest, TruncatedTags) { if (!(GetParam().flags & kCanTruncateTags)) { return; } uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; OPENSSL_memset(key, 0, sizeof(key)); const size_t key_len = EVP_AEAD_key_length(aead()); ASSERT_GE(sizeof(key), key_len); uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; OPENSSL_memset(nonce, 0, sizeof(nonce)); const size_t nonce_len = EVP_AEAD_nonce_length(aead()); ASSERT_GE(sizeof(nonce), nonce_len); const size_t tag_len = MinimumTagLength(GetParam().flags); bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key, key_len, tag_len, NULL /* ENGINE */)); const uint8_t plaintext[1] = {'A'}; uint8_t ciphertext[128]; size_t ciphertext_len; constexpr uint8_t kSentinel = 42; OPENSSL_memset(ciphertext, kSentinel, sizeof(ciphertext)); ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), ciphertext, &ciphertext_len, sizeof(ciphertext), nonce, nonce_len, plaintext, sizeof(plaintext), nullptr /* ad */, 0)); for (size_t i = ciphertext_len; i < sizeof(ciphertext); i++) { // Sealing must not write past where it said it did. EXPECT_EQ(kSentinel, ciphertext[i]) << "Sealing wrote off the end of the buffer."; } const size_t overhead_used = ciphertext_len - sizeof(plaintext); const size_t expected_overhead = tag_len + EVP_AEAD_max_overhead(aead()) - EVP_AEAD_max_tag_len(aead()); EXPECT_EQ(overhead_used, expected_overhead) << "AEAD is probably ignoring request to truncate tags."; uint8_t plaintext2[sizeof(plaintext) + 16]; OPENSSL_memset(plaintext2, kSentinel, sizeof(plaintext2)); size_t plaintext2_len; ASSERT_TRUE(EVP_AEAD_CTX_open( ctx.get(), plaintext2, &plaintext2_len, sizeof(plaintext2), nonce, nonce_len, ciphertext, ciphertext_len, nullptr /* ad */, 0)) << "Opening with truncated tag didn't work."; for (size_t i = plaintext2_len; i < sizeof(plaintext2); i++) { // Likewise, opening should also stay within bounds. EXPECT_EQ(kSentinel, plaintext2[i]) << "Opening wrote off the end of the buffer."; } EXPECT_EQ(Bytes(plaintext), Bytes(plaintext2, plaintext2_len)); } TEST_P(PerAEADTest, AliasedBuffers) { if (GetParam().flags & kLimitedImplementation) { return; } const size_t key_len = EVP_AEAD_key_length(aead()); const size_t nonce_len = EVP_AEAD_nonce_length(aead()); const size_t max_overhead = EVP_AEAD_max_overhead(aead()); std::vector key(key_len, 'a'); bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key.data(), key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); static const uint8_t kPlaintext[260] = "testing123456testing123456testing123456testing123456testing123456testing" "123456testing123456testing123456testing123456testing123456testing123456t" "esting123456testing123456testing123456testing123456testing123456testing1" "23456testing123456testing123456testing12345"; const std::vector offsets = { 0, 1, 2, 8, 15, 16, 17, 31, 32, 33, 63, 64, 65, 95, 96, 97, 127, 128, 129, 255, 256, 257, }; std::vector nonce(nonce_len, 'b'); std::vector valid_encryption(sizeof(kPlaintext) + max_overhead); size_t valid_encryption_len; ASSERT_TRUE(EVP_AEAD_CTX_seal( ctx.get(), valid_encryption.data(), &valid_encryption_len, sizeof(kPlaintext) + max_overhead, nonce.data(), nonce_len, kPlaintext, sizeof(kPlaintext), nullptr, 0)) << "EVP_AEAD_CTX_seal failed with disjoint buffers."; // Test with out != in which we expect to fail. std::vector buffer(2 + valid_encryption_len); uint8_t *in = buffer.data() + 1; uint8_t *out1 = buffer.data(); uint8_t *out2 = buffer.data() + 2; OPENSSL_memcpy(in, kPlaintext, sizeof(kPlaintext)); size_t out_len; EXPECT_FALSE(EVP_AEAD_CTX_seal( ctx.get(), out1 /* in - 1 */, &out_len, sizeof(kPlaintext) + max_overhead, nonce.data(), nonce_len, in, sizeof(kPlaintext), nullptr, 0)); EXPECT_FALSE(EVP_AEAD_CTX_seal( ctx.get(), out2 /* in + 1 */, &out_len, sizeof(kPlaintext) + max_overhead, nonce.data(), nonce_len, in, sizeof(kPlaintext), nullptr, 0)); ERR_clear_error(); OPENSSL_memcpy(in, valid_encryption.data(), valid_encryption_len); EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out1 /* in - 1 */, &out_len, valid_encryption_len, nonce.data(), nonce_len, in, valid_encryption_len, nullptr, 0)); EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out2 /* in + 1 */, &out_len, valid_encryption_len, nonce.data(), nonce_len, in, valid_encryption_len, nullptr, 0)); ERR_clear_error(); // Test with out == in, which we expect to work. OPENSSL_memcpy(in, kPlaintext, sizeof(kPlaintext)); ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), in, &out_len, sizeof(kPlaintext) + max_overhead, nonce.data(), nonce_len, in, sizeof(kPlaintext), nullptr, 0)); if (!(GetParam().flags & kNondeterministic)) { EXPECT_EQ(Bytes(valid_encryption.data(), valid_encryption_len), Bytes(in, out_len)); } OPENSSL_memcpy(in, valid_encryption.data(), valid_encryption_len); ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), in, &out_len, valid_encryption_len, nonce.data(), nonce_len, in, valid_encryption_len, nullptr, 0)); EXPECT_EQ(Bytes(kPlaintext), Bytes(in, out_len)); } TEST_P(PerAEADTest, UnalignedInput) { alignas(16) uint8_t key[EVP_AEAD_MAX_KEY_LENGTH + 1]; alignas(16) uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH + 1]; alignas(16) uint8_t plaintext[32 + 1]; alignas(16) uint8_t ad[32 + 1]; OPENSSL_memset(key, 'K', sizeof(key)); OPENSSL_memset(nonce, 'N', sizeof(nonce)); OPENSSL_memset(plaintext, 'P', sizeof(plaintext)); OPENSSL_memset(ad, 'A', sizeof(ad)); const size_t key_len = EVP_AEAD_key_length(aead()); ASSERT_GE(sizeof(key) - 1, key_len); const size_t nonce_len = EVP_AEAD_nonce_length(aead()); ASSERT_GE(sizeof(nonce) - 1, nonce_len); const size_t ad_len = RequiredADLength(GetParam().flags) != 0 ? RequiredADLength(GetParam().flags) : sizeof(ad) - 1; ASSERT_GE(sizeof(ad) - 1, ad_len); // Encrypt some input. bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key + 1, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_seal)); alignas(16) uint8_t ciphertext[sizeof(plaintext) + EVP_AEAD_MAX_OVERHEAD]; size_t ciphertext_len; ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), ciphertext + 1, &ciphertext_len, sizeof(ciphertext) - 1, nonce + 1, nonce_len, plaintext + 1, sizeof(plaintext) - 1, ad + 1, ad_len)); // It must successfully decrypt. alignas(16) uint8_t out[sizeof(ciphertext)]; ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), key + 1, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_open)); size_t out_len; ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), out + 1, &out_len, sizeof(out) - 1, nonce + 1, nonce_len, ciphertext + 1, ciphertext_len, ad + 1, ad_len)); EXPECT_EQ(Bytes(plaintext + 1, sizeof(plaintext) - 1), Bytes(out + 1, out_len)); } TEST_P(PerAEADTest, Overflow) { uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; OPENSSL_memset(key, 'K', sizeof(key)); bssl::ScopedEVP_AEAD_CTX ctx; const size_t max_tag_len = EVP_AEAD_max_tag_len(aead()); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(ctx.get(), aead(), key, EVP_AEAD_key_length(aead()), max_tag_len, evp_aead_seal)); uint8_t plaintext[1] = {0}; uint8_t ciphertext[1024] = {0}; size_t ciphertext_len; // The AEAD must not overflow when calculating the ciphertext length. ASSERT_FALSE(EVP_AEAD_CTX_seal( ctx.get(), ciphertext, &ciphertext_len, sizeof(ciphertext), nullptr, 0, plaintext, std::numeric_limits::max() - max_tag_len + 1, nullptr, 0)); ERR_clear_error(); // (Can't test the scatter interface because it'll attempt to zero the output // buffer on error and the primary output buffer is implicitly the same size // as the input.) } TEST_P(PerAEADTest, InvalidNonceLength) { size_t valid_nonce_len = EVP_AEAD_nonce_length(aead()); std::vector nonce_lens; if (valid_nonce_len != 0) { // Other than the implicit IV TLS "AEAD"s, none of our AEADs allow empty // nonces. In particular, although AES-GCM was incorrectly specified with // variable-length nonces, it does not allow the empty nonce. nonce_lens.push_back(0); } if (!(GetParam().flags & kVariableNonce)) { nonce_lens.push_back(valid_nonce_len + 1); if (valid_nonce_len != 0) { nonce_lens.push_back(valid_nonce_len - 1); } } static const uint8_t kZeros[EVP_AEAD_MAX_KEY_LENGTH] = {0}; const size_t ad_len = RequiredADLength(GetParam().flags) != 0 ? RequiredADLength(GetParam().flags) : 16; ASSERT_LE(ad_len, sizeof(kZeros)); for (size_t nonce_len : nonce_lens) { SCOPED_TRACE(nonce_len); uint8_t buf[256]; size_t len; std::vector nonce(nonce_len); bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), kZeros, EVP_AEAD_key_length(aead()), EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_seal)); EXPECT_FALSE(EVP_AEAD_CTX_seal(ctx.get(), buf, &len, sizeof(buf), nonce.data(), nonce.size(), nullptr /* in */, 0, kZeros /* ad */, ad_len)); uint32_t err = ERR_get_error(); EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err)); // TODO(davidben): Merge these errors. https://crbug.com/boringssl/129. if (ERR_GET_REASON(err) != CIPHER_R_UNSUPPORTED_NONCE_SIZE) { EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err)); } ctx.Reset(); ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( ctx.get(), aead(), kZeros, EVP_AEAD_key_length(aead()), EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_open)); EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), buf, &len, sizeof(buf), nonce.data(), nonce.size(), kZeros /* in */, sizeof(kZeros), kZeros /* ad */, ad_len)); err = ERR_get_error(); EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err)); if (ERR_GET_REASON(err) != CIPHER_R_UNSUPPORTED_NONCE_SIZE) { EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err)); } } } #if defined(SUPPORTS_ABI_TEST) // CHECK_ABI can't pass enums, i.e. |evp_aead_seal| and |evp_aead_open|. Thus // these two wrappers. static int aead_ctx_init_for_seal(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len) { return EVP_AEAD_CTX_init_with_direction(ctx, aead, key, key_len, 0, evp_aead_seal); } static int aead_ctx_init_for_open(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len) { return EVP_AEAD_CTX_init_with_direction(ctx, aead, key, key_len, 0, evp_aead_open); } // CHECK_ABI can pass, at most, eight arguments. Thus these wrappers that // figure out the output length from the input length, and take the nonce length // from the configuration of the AEAD. static int aead_ctx_seal(EVP_AEAD_CTX *ctx, uint8_t *out_ciphertext, size_t *out_ciphertext_len, const uint8_t *nonce, const uint8_t *plaintext, size_t plaintext_len, const uint8_t *ad, size_t ad_len) { const size_t nonce_len = EVP_AEAD_nonce_length(EVP_AEAD_CTX_aead(ctx)); return EVP_AEAD_CTX_seal(ctx, out_ciphertext, out_ciphertext_len, plaintext_len + EVP_AEAD_MAX_OVERHEAD, nonce, nonce_len, plaintext, plaintext_len, ad, ad_len); } static int aead_ctx_open(EVP_AEAD_CTX *ctx, uint8_t *out_plaintext, size_t *out_plaintext_len, const uint8_t *nonce, const uint8_t *ciphertext, size_t ciphertext_len, const uint8_t *ad, size_t ad_len) { const size_t nonce_len = EVP_AEAD_nonce_length(EVP_AEAD_CTX_aead(ctx)); return EVP_AEAD_CTX_open(ctx, out_plaintext, out_plaintext_len, ciphertext_len, nonce, nonce_len, ciphertext, ciphertext_len, ad, ad_len); } TEST_P(PerAEADTest, ABI) { uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; OPENSSL_memset(key, 'K', sizeof(key)); const size_t key_len = EVP_AEAD_key_length(aead()); ASSERT_LE(key_len, sizeof(key)); bssl::ScopedEVP_AEAD_CTX ctx_seal; ASSERT_TRUE( CHECK_ABI(aead_ctx_init_for_seal, ctx_seal.get(), aead(), key, key_len)); bssl::ScopedEVP_AEAD_CTX ctx_open; ASSERT_TRUE( CHECK_ABI(aead_ctx_init_for_open, ctx_open.get(), aead(), key, key_len)); alignas(2) uint8_t plaintext[512]; OPENSSL_memset(plaintext, 'P', sizeof(plaintext)); alignas(2) uint8_t ad_buf[512]; OPENSSL_memset(ad_buf, 'A', sizeof(ad_buf)); const uint8_t *const ad = ad_buf + 1; ASSERT_LE(RequiredADLength(GetParam().flags), sizeof(ad_buf) - 1); const size_t ad_len = RequiredADLength(GetParam().flags) != 0 ? RequiredADLength(GetParam().flags) : sizeof(ad_buf) - 1; uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; OPENSSL_memset(nonce, 'N', sizeof(nonce)); const size_t nonce_len = EVP_AEAD_nonce_length(aead()); ASSERT_LE(nonce_len, sizeof(nonce)); alignas(2) uint8_t ciphertext[sizeof(plaintext) + EVP_AEAD_MAX_OVERHEAD + 1]; size_t ciphertext_len; // Knock plaintext, ciphertext, and AD off alignment and give odd lengths for // plaintext and AD. This hopefully triggers any edge-cases in the assembly. ASSERT_TRUE(CHECK_ABI(aead_ctx_seal, ctx_seal.get(), ciphertext + 1, &ciphertext_len, nonce, plaintext + 1, sizeof(plaintext) - 1, ad, ad_len)); alignas(2) uint8_t plaintext2[sizeof(ciphertext) + 1]; size_t plaintext2_len; ASSERT_TRUE(CHECK_ABI(aead_ctx_open, ctx_open.get(), plaintext2 + 1, &plaintext2_len, nonce, ciphertext + 1, ciphertext_len, ad, ad_len)); EXPECT_EQ(Bytes(plaintext + 1, sizeof(plaintext) - 1), Bytes(plaintext2 + 1, plaintext2_len)); } TEST(ChaChaPoly1305Test, ABI) { if (!chacha20_poly1305_asm_capable()) { return; } std::unique_ptr buf(new uint8_t[1024]); for (size_t len = 0; len <= 1024; len += 5) { SCOPED_TRACE(len); union chacha20_poly1305_open_data open_ctx = {}; CHECK_ABI(chacha20_poly1305_open, buf.get(), buf.get(), len, buf.get(), len % 128, &open_ctx); } for (size_t len = 0; len <= 1024; len += 5) { SCOPED_TRACE(len); union chacha20_poly1305_seal_data seal_ctx = {}; CHECK_ABI(chacha20_poly1305_seal, buf.get(), buf.get(), len, buf.get(), len % 128, &seal_ctx); } } #endif // SUPPORTS_ABI_TEST TEST(AEADTest, AESCCMLargeAD) { static const std::vector kKey(16, 'A'); static const std::vector kNonce(13, 'N'); static const std::vector kAD(65536, 'D'); static const std::vector kPlaintext = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; static const std::vector kCiphertext = { 0xa2, 0x12, 0x3f, 0x0b, 0x07, 0xd5, 0x02, 0xff, 0xa9, 0xcd, 0xa0, 0xf3, 0x69, 0x1c, 0x49, 0x0c}; static const std::vector kTag = {0x4a, 0x31, 0x82, 0x96}; // Test AES-128-CCM-Bluetooth. bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), EVP_aead_aes_128_ccm_bluetooth(), kKey.data(), kKey.size(), EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); std::vector out(kCiphertext.size() + kTag.size()); size_t out_len; EXPECT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(), kNonce.data(), kNonce.size(), kPlaintext.data(), kPlaintext.size(), kAD.data(), kAD.size())); ASSERT_EQ(out_len, kCiphertext.size() + kTag.size()); EXPECT_EQ(Bytes(kCiphertext), Bytes(out.data(), kCiphertext.size())); EXPECT_EQ(Bytes(kTag), Bytes(out.data() + kCiphertext.size(), kTag.size())); EXPECT_TRUE(EVP_AEAD_CTX_open(ctx.get(), out.data(), &out_len, out.size(), kNonce.data(), kNonce.size(), out.data(), out.size(), kAD.data(), kAD.size())); ASSERT_EQ(out_len, kPlaintext.size()); EXPECT_EQ(Bytes(kPlaintext), Bytes(out.data(), kPlaintext.size())); } static void RunWycheproofTestCase(FileTest *t, const EVP_AEAD *aead) { t->IgnoreInstruction("ivSize"); std::vector aad, ct, iv, key, msg, tag; ASSERT_TRUE(t->GetBytes(&aad, "aad")); ASSERT_TRUE(t->GetBytes(&ct, "ct")); ASSERT_TRUE(t->GetBytes(&iv, "iv")); ASSERT_TRUE(t->GetBytes(&key, "key")); ASSERT_TRUE(t->GetBytes(&msg, "msg")); ASSERT_TRUE(t->GetBytes(&tag, "tag")); std::string tag_size_str; ASSERT_TRUE(t->GetInstruction(&tag_size_str, "tagSize")); size_t tag_size = static_cast(atoi(tag_size_str.c_str())); ASSERT_EQ(0u, tag_size % 8); tag_size /= 8; WycheproofResult result; ASSERT_TRUE(GetWycheproofResult(t, &result)); std::vector ct_and_tag = ct; ct_and_tag.insert(ct_and_tag.end(), tag.begin(), tag.end()); bssl::ScopedEVP_AEAD_CTX ctx; ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead, key.data(), key.size(), tag_size, nullptr)); std::vector out(msg.size()); size_t out_len; // Wycheproof tags small AES-GCM IVs as "acceptable" and otherwise does not // use it in AEADs. Any AES-GCM IV that isn't 96 bits is absurd, but our API // supports those, so we treat SmallIv tests as valid. if (result.IsValid({"SmallIv"})) { // Decryption should succeed. ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), out.data(), &out_len, out.size(), iv.data(), iv.size(), ct_and_tag.data(), ct_and_tag.size(), aad.data(), aad.size())); EXPECT_EQ(Bytes(msg), Bytes(out.data(), out_len)); // Decryption in-place should succeed. out = ct_and_tag; ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), out.data(), &out_len, out.size(), iv.data(), iv.size(), out.data(), out.size(), aad.data(), aad.size())); EXPECT_EQ(Bytes(msg), Bytes(out.data(), out_len)); // AEADs are deterministic, so encryption should produce the same result. out.resize(ct_and_tag.size()); ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(), iv.data(), iv.size(), msg.data(), msg.size(), aad.data(), aad.size())); EXPECT_EQ(Bytes(ct_and_tag), Bytes(out.data(), out_len)); // Encrypt in-place. out = msg; out.resize(ct_and_tag.size()); ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(), iv.data(), iv.size(), out.data(), msg.size(), aad.data(), aad.size())); EXPECT_EQ(Bytes(ct_and_tag), Bytes(out.data(), out_len)); } else { // Decryption should fail. EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out.data(), &out_len, out.size(), iv.data(), iv.size(), ct_and_tag.data(), ct_and_tag.size(), aad.data(), aad.size())); // Decryption in-place should also fail. out = ct_and_tag; EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out.data(), &out_len, out.size(), iv.data(), iv.size(), out.data(), out.size(), aad.data(), aad.size())); } } TEST(AEADTest, WycheproofAESGCMSIV) { FileTestGTest("third_party/wycheproof_testvectors/aes_gcm_siv_test.txt", [](FileTest *t) { std::string key_size_str; ASSERT_TRUE(t->GetInstruction(&key_size_str, "keySize")); const EVP_AEAD *aead; switch (atoi(key_size_str.c_str())) { case 128: aead = EVP_aead_aes_128_gcm_siv(); break; case 256: aead = EVP_aead_aes_256_gcm_siv(); break; default: FAIL() << "Unknown key size: " << key_size_str; } RunWycheproofTestCase(t, aead); }); } TEST(AEADTest, WycheproofAESGCM) { FileTestGTest("third_party/wycheproof_testvectors/aes_gcm_test.txt", [](FileTest *t) { std::string key_size_str; ASSERT_TRUE(t->GetInstruction(&key_size_str, "keySize")); const EVP_AEAD *aead; switch (atoi(key_size_str.c_str())) { case 128: aead = EVP_aead_aes_128_gcm(); break; case 192: aead = EVP_aead_aes_192_gcm(); break; case 256: aead = EVP_aead_aes_256_gcm(); break; default: FAIL() << "Unknown key size: " << key_size_str; } RunWycheproofTestCase(t, aead); }); } TEST(AEADTest, WycheproofChaCha20Poly1305) { FileTestGTest("third_party/wycheproof_testvectors/chacha20_poly1305_test.txt", [](FileTest *t) { t->IgnoreInstruction("keySize"); RunWycheproofTestCase(t, EVP_aead_chacha20_poly1305()); }); } TEST(AEADTest, WycheproofXChaCha20Poly1305) { FileTestGTest( "third_party/wycheproof_testvectors/xchacha20_poly1305_test.txt", [](FileTest *t) { t->IgnoreInstruction("keySize"); RunWycheproofTestCase(t, EVP_aead_xchacha20_poly1305()); }); }