/* * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project. */ /* ==================================================================== * Copyright (c) 2015 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../test/file_test.h" #include "../test/test_util.h" #include "../test/wycheproof_util.h" #include "./internal.h" static const EVP_CIPHER *GetCipher(const std::string &name) { if (name == "DES-CBC") { return EVP_des_cbc(); } else if (name == "DES-ECB") { return EVP_des_ecb(); } else if (name == "DES-EDE") { return EVP_des_ede(); } else if (name == "DES-EDE3") { return EVP_des_ede3(); } else if (name == "DES-EDE-CBC") { return EVP_des_ede_cbc(); } else if (name == "DES-EDE3-CBC") { return EVP_des_ede3_cbc(); } else if (name == "RC4") { return EVP_rc4(); } else if (name == "AES-128-ECB") { return EVP_aes_128_ecb(); } else if (name == "AES-256-ECB") { return EVP_aes_256_ecb(); } else if (name == "AES-128-CBC") { return EVP_aes_128_cbc(); } else if (name == "AES-128-GCM") { return EVP_aes_128_gcm(); } else if (name == "AES-128-OFB") { return EVP_aes_128_ofb(); } else if (name == "AES-192-CBC") { return EVP_aes_192_cbc(); } else if (name == "AES-192-CTR") { return EVP_aes_192_ctr(); } else if (name == "AES-192-ECB") { return EVP_aes_192_ecb(); } else if (name == "AES-192-OFB") { return EVP_aes_192_ofb(); } else if (name == "AES-256-CBC") { return EVP_aes_256_cbc(); } else if (name == "AES-128-CTR") { return EVP_aes_128_ctr(); } else if (name == "AES-256-CTR") { return EVP_aes_256_ctr(); } else if (name == "AES-256-GCM") { return EVP_aes_256_gcm(); } else if (name == "AES-256-OFB") { return EVP_aes_256_ofb(); } return nullptr; } static bool DoCipher(EVP_CIPHER_CTX *ctx, std::vector *out, bssl::Span in, size_t chunk, bool in_place) { size_t max_out = in.size(); if ((EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_NO_PADDING) == 0 && EVP_CIPHER_CTX_encrypting(ctx)) { unsigned block_size = EVP_CIPHER_CTX_block_size(ctx); max_out += block_size - (max_out % block_size); } out->resize(max_out); if (in_place) { std::copy(in.begin(), in.end(), out->begin()); in = bssl::MakeConstSpan(out->data(), in.size()); } size_t total = 0; int len; while (!in.empty()) { size_t todo = chunk == 0 ? in.size() : std::min(in.size(), chunk); EXPECT_LE(todo, static_cast(INT_MAX)); if (!EVP_CipherUpdate(ctx, out->data() + total, &len, in.data(), static_cast(todo))) { return false; } EXPECT_GE(len, 0); total += static_cast(len); in = in.subspan(todo); } if (!EVP_CipherFinal_ex(ctx, out->data() + total, &len)) { return false; } EXPECT_GE(len, 0); total += static_cast(len); out->resize(total); return true; } static void TestOperation(FileTest *t, const EVP_CIPHER *cipher, bool encrypt, bool copy, bool in_place, size_t chunk_size, const std::vector &key, const std::vector &iv, const std::vector &plaintext, const std::vector &ciphertext, const std::vector &aad, const std::vector &tag) { const std::vector *in, *out; if (encrypt) { in = &plaintext; out = &ciphertext; } else { in = &ciphertext; out = &plaintext; } bool is_aead = EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE; bssl::ScopedEVP_CIPHER_CTX ctx1; ASSERT_TRUE(EVP_CipherInit_ex(ctx1.get(), cipher, nullptr, nullptr, nullptr, encrypt ? 1 : 0)); if (t->HasAttribute("IV")) { if (is_aead) { ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx1.get(), EVP_CTRL_AEAD_SET_IVLEN, iv.size(), 0)); } else { ASSERT_EQ(iv.size(), EVP_CIPHER_CTX_iv_length(ctx1.get())); } } bssl::ScopedEVP_CIPHER_CTX ctx2; EVP_CIPHER_CTX *ctx = ctx1.get(); if (copy) { ASSERT_TRUE(EVP_CIPHER_CTX_copy(ctx2.get(), ctx1.get())); ctx = ctx2.get(); } if (is_aead && !encrypt) { ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag.size(), const_cast(tag.data()))); } // The ciphers are run with no padding. For each of the ciphers we test, the // output size matches the input size. ASSERT_EQ(in->size(), out->size()); ASSERT_TRUE(EVP_CIPHER_CTX_set_key_length(ctx, key.size())); ASSERT_TRUE( EVP_CipherInit_ex(ctx, nullptr, nullptr, key.data(), iv.data(), -1)); // Note: the deprecated |EVP_CIPHER|-based AEAD API is sensitive to whether // parameters are NULL, so it is important to skip the |in| and |aad| // |EVP_CipherUpdate| calls when empty. if (!aad.empty()) { int unused; ASSERT_TRUE( EVP_CipherUpdate(ctx, nullptr, &unused, aad.data(), aad.size())); } ASSERT_TRUE(EVP_CIPHER_CTX_set_padding(ctx, 0)); std::vector result; ASSERT_TRUE(DoCipher(ctx, &result, *in, chunk_size, in_place)); EXPECT_EQ(Bytes(*out), Bytes(result)); if (encrypt && is_aead) { uint8_t rtag[16]; ASSERT_LE(tag.size(), sizeof(rtag)); ASSERT_TRUE( EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, tag.size(), rtag)); EXPECT_EQ(Bytes(tag), Bytes(rtag, tag.size())); } // Additionally test low-level AES mode APIs. Skip runs where |copy| because // it does not apply. if (!copy) { int nid = EVP_CIPHER_nid(cipher); bool is_ctr = nid == NID_aes_128_ctr || nid == NID_aes_192_ctr || nid == NID_aes_256_ctr; bool is_cbc = nid == NID_aes_128_cbc || nid == NID_aes_192_cbc || nid == NID_aes_256_cbc; bool is_ofb = nid == NID_aes_128_ofb128 || nid == NID_aes_192_ofb128 || nid == NID_aes_256_ofb128; if (is_ctr || is_cbc || is_ofb) { AES_KEY aes; if (encrypt || !is_cbc) { ASSERT_EQ(0, AES_set_encrypt_key(key.data(), key.size() * 8, &aes)); } else { ASSERT_EQ(0, AES_set_decrypt_key(key.data(), key.size() * 8, &aes)); } // The low-level APIs all work in-place. bssl::Span input = *in; result.clear(); if (in_place) { result = *in; input = result; } else { result.resize(out->size()); } bssl::Span output = bssl::MakeSpan(result); ASSERT_EQ(input.size(), output.size()); // The low-level APIs all use block-size IVs. ASSERT_EQ(iv.size(), size_t{AES_BLOCK_SIZE}); uint8_t ivec[AES_BLOCK_SIZE]; OPENSSL_memcpy(ivec, iv.data(), iv.size()); if (is_ctr) { unsigned num = 0; uint8_t ecount_buf[AES_BLOCK_SIZE]; if (chunk_size == 0) { AES_ctr128_encrypt(input.data(), output.data(), input.size(), &aes, ivec, ecount_buf, &num); } else { do { size_t todo = std::min(input.size(), chunk_size); AES_ctr128_encrypt(input.data(), output.data(), todo, &aes, ivec, ecount_buf, &num); input = input.subspan(todo); output = output.subspan(todo); } while (!input.empty()); } EXPECT_EQ(Bytes(*out), Bytes(result)); } else if (is_cbc && chunk_size % AES_BLOCK_SIZE == 0) { // Note |AES_cbc_encrypt| requires block-aligned chunks. if (chunk_size == 0) { AES_cbc_encrypt(input.data(), output.data(), input.size(), &aes, ivec, encrypt); } else { do { size_t todo = std::min(input.size(), chunk_size); AES_cbc_encrypt(input.data(), output.data(), todo, &aes, ivec, encrypt); input = input.subspan(todo); output = output.subspan(todo); } while (!input.empty()); } EXPECT_EQ(Bytes(*out), Bytes(result)); } else if (is_ofb) { int num = 0; if (chunk_size == 0) { AES_ofb128_encrypt(input.data(), output.data(), input.size(), &aes, ivec, &num); } else { do { size_t todo = std::min(input.size(), chunk_size); AES_ofb128_encrypt(input.data(), output.data(), todo, &aes, ivec, &num); input = input.subspan(todo); output = output.subspan(todo); } while (!input.empty()); } EXPECT_EQ(Bytes(*out), Bytes(result)); } } } } static void TestCipher(FileTest *t) { std::string cipher_str; ASSERT_TRUE(t->GetAttribute(&cipher_str, "Cipher")); const EVP_CIPHER *cipher = GetCipher(cipher_str); ASSERT_TRUE(cipher); std::vector key, iv, plaintext, ciphertext, aad, tag; ASSERT_TRUE(t->GetBytes(&key, "Key")); ASSERT_TRUE(t->GetBytes(&plaintext, "Plaintext")); ASSERT_TRUE(t->GetBytes(&ciphertext, "Ciphertext")); if (EVP_CIPHER_iv_length(cipher) > 0) { ASSERT_TRUE(t->GetBytes(&iv, "IV")); } if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) { ASSERT_TRUE(t->GetBytes(&aad, "AAD")); ASSERT_TRUE(t->GetBytes(&tag, "Tag")); } enum { kEncrypt, kDecrypt, kBoth, } operation = kBoth; if (t->HasAttribute("Operation")) { const std::string &str = t->GetAttributeOrDie("Operation"); if (str == "ENCRYPT") { operation = kEncrypt; } else if (str == "DECRYPT") { operation = kDecrypt; } else { FAIL() << "Unknown operation: " << str; } } const std::vector chunk_sizes = {0, 1, 2, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 512}; for (size_t chunk_size : chunk_sizes) { SCOPED_TRACE(chunk_size); for (bool copy : {false, true}) { SCOPED_TRACE(copy); for (bool in_place : {false, true}) { SCOPED_TRACE(in_place); // By default, both directions are run, unless overridden by the // operation. if (operation != kDecrypt) { SCOPED_TRACE("encrypt"); TestOperation(t, cipher, true /* encrypt */, copy, in_place, chunk_size, key, iv, plaintext, ciphertext, aad, tag); } if (operation != kEncrypt) { SCOPED_TRACE("decrypt"); TestOperation(t, cipher, false /* decrypt */, copy, in_place, chunk_size, key, iv, plaintext, ciphertext, aad, tag); } } } } } TEST(CipherTest, TestVectors) { FileTestGTest("crypto/cipher_extra/test/cipher_tests.txt", TestCipher); } TEST(CipherTest, CAVP_AES_128_CBC) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_cbc.txt", TestCipher); } TEST(CipherTest, CAVP_AES_128_CTR) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_ctr.txt", TestCipher); } TEST(CipherTest, CAVP_AES_192_CBC) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_cbc.txt", TestCipher); } TEST(CipherTest, CAVP_AES_192_CTR) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_ctr.txt", TestCipher); } TEST(CipherTest, CAVP_AES_256_CBC) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_cbc.txt", TestCipher); } TEST(CipherTest, CAVP_AES_256_CTR) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_ctr.txt", TestCipher); } TEST(CipherTest, CAVP_TDES_CBC) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_cbc.txt", TestCipher); } TEST(CipherTest, CAVP_TDES_ECB) { FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_ecb.txt", TestCipher); } TEST(CipherTest, WycheproofAESCBC) { FileTestGTest( "third_party/wycheproof_testvectors/aes_cbc_pkcs5_test.txt", [](FileTest *t) { t->IgnoreInstruction("type"); t->IgnoreInstruction("ivSize"); std::string key_size; ASSERT_TRUE(t->GetInstruction(&key_size, "keySize")); const EVP_CIPHER *cipher; switch (atoi(key_size.c_str())) { case 128: cipher = EVP_aes_128_cbc(); break; case 192: cipher = EVP_aes_192_cbc(); break; case 256: cipher = EVP_aes_256_cbc(); break; default: FAIL() << "Unsupported key size: " << key_size; } std::vector key, iv, msg, ct; ASSERT_TRUE(t->GetBytes(&key, "key")); ASSERT_TRUE(t->GetBytes(&iv, "iv")); ASSERT_TRUE(t->GetBytes(&msg, "msg")); ASSERT_TRUE(t->GetBytes(&ct, "ct")); ASSERT_EQ(EVP_CIPHER_key_length(cipher), key.size()); ASSERT_EQ(EVP_CIPHER_iv_length(cipher), iv.size()); WycheproofResult result; ASSERT_TRUE(GetWycheproofResult(t, &result)); bssl::ScopedEVP_CIPHER_CTX ctx; std::vector out; const std::vector chunk_sizes = { 0, 1, 2, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 512}; for (size_t chunk : chunk_sizes) { SCOPED_TRACE(chunk); for (bool in_place : {false, true}) { SCOPED_TRACE(in_place); if (result.IsValid()) { ASSERT_TRUE(EVP_DecryptInit_ex(ctx.get(), cipher, nullptr, key.data(), iv.data())); ASSERT_TRUE(DoCipher(ctx.get(), &out, ct, chunk, in_place)); EXPECT_EQ(Bytes(msg), Bytes(out)); ASSERT_TRUE(EVP_EncryptInit_ex(ctx.get(), cipher, nullptr, key.data(), iv.data())); ASSERT_TRUE(DoCipher(ctx.get(), &out, msg, chunk, in_place)); EXPECT_EQ(Bytes(ct), Bytes(out)); } else { ASSERT_TRUE(EVP_DecryptInit_ex(ctx.get(), cipher, nullptr, key.data(), iv.data())); EXPECT_FALSE(DoCipher(ctx.get(), &out, ct, chunk, in_place)); } } } }); } TEST(CipherTest, SHA1WithSecretSuffix) { uint8_t buf[SHA_CBLOCK * 4]; RAND_bytes(buf, sizeof(buf)); // Hashing should run in time independent of the bytes. CONSTTIME_SECRET(buf, sizeof(buf)); // Exhaustively testing interesting cases in this function is cubic in the // block size, so we test in 3-byte increments. constexpr size_t kSkip = 3; // This value should be less than 8 to test the edge case when the 8-byte // length wraps to the next block. static_assert(kSkip < 8, "kSkip is too large"); // |EVP_sha1_final_with_secret_suffix| is sensitive to the public length of // the partial block previously hashed. In TLS, this is the HMAC prefix, the // header, and the public minimum padding length. for (size_t prefix = 0; prefix < SHA_CBLOCK; prefix += kSkip) { SCOPED_TRACE(prefix); // The first block is treated differently, so we run with up to three // blocks of length variability. for (size_t max_len = 0; max_len < 3 * SHA_CBLOCK; max_len += kSkip) { SCOPED_TRACE(max_len); for (size_t len = 0; len <= max_len; len += kSkip) { SCOPED_TRACE(len); uint8_t expected[SHA_DIGEST_LENGTH]; SHA1(buf, prefix + len, expected); CONSTTIME_DECLASSIFY(expected, sizeof(expected)); // Make a copy of the secret length to avoid interfering with the loop. size_t secret_len = len; CONSTTIME_SECRET(&secret_len, sizeof(secret_len)); SHA_CTX ctx; SHA1_Init(&ctx); SHA1_Update(&ctx, buf, prefix); uint8_t computed[SHA_DIGEST_LENGTH]; ASSERT_TRUE(EVP_sha1_final_with_secret_suffix( &ctx, computed, buf + prefix, secret_len, max_len)); CONSTTIME_DECLASSIFY(computed, sizeof(computed)); EXPECT_EQ(Bytes(expected), Bytes(computed)); } } } }