/* Copyright (c) 2020, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "internal.h" #include "../fipsmodule/bn/internal.h" #include "../fipsmodule/ec/internal.h" #include "../internal.h" // This file implements hash-to-curve, as described in // draft-irtf-cfrg-hash-to-curve-07. // // This hash-to-curve implementation is written generically with the // expectation that we will eventually wish to support other curves. If it // becomes a performance bottleneck, some possible optimizations by // specializing it to the curve: // // - Rather than using a generic |felem_exp|, specialize the exponentation to // c2 with a faster addition chain. // // - |felem_mul| and |felem_sqr| are indirect calls to generic Montgomery // code. Given the few curves, we could specialize // |map_to_curve_simple_swu|. But doing this reasonably without duplicating // code in C is difficult. (C++ templates would be useful here.) // // - P-521's Z and c2 have small power-of-two absolute values. We could save // two multiplications in SSWU. (Other curves have reasonable values of Z // and inconvenient c2.) This is unlikely to be worthwhile without C++ // templates to make specializing more convenient. // expand_message_xmd implements the operation described in section 5.3.1 of // draft-irtf-cfrg-hash-to-curve-07. It returns one on success and zero on // allocation failure or if |out_len| was too large. static int expand_message_xmd(const EVP_MD *md, uint8_t *out, size_t out_len, const uint8_t *msg, size_t msg_len, const uint8_t *dst, size_t dst_len) { int ret = 0; const size_t block_size = EVP_MD_block_size(md); const size_t md_size = EVP_MD_size(md); EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); // Long DSTs are hashed down to size. See section 5.3.3. OPENSSL_STATIC_ASSERT(EVP_MAX_MD_SIZE < 256, "hashed DST still too large"); uint8_t dst_buf[EVP_MAX_MD_SIZE]; if (dst_len >= 256) { static const char kPrefix[] = "H2C-OVERSIZE-DST-"; if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, kPrefix, sizeof(kPrefix) - 1) || !EVP_DigestUpdate(&ctx, dst, dst_len) || !EVP_DigestFinal_ex(&ctx, dst_buf, NULL)) { goto err; } dst = dst_buf; dst_len = md_size; } uint8_t dst_len_u8 = (uint8_t)dst_len; // Compute b_0. static const uint8_t kZeros[EVP_MAX_MD_BLOCK_SIZE] = {0}; // If |out_len| exceeds 16 bits then |i| will wrap below causing an error to // be returned. This depends on the static assert above. uint8_t l_i_b_str_zero[3] = {out_len >> 8, out_len, 0}; uint8_t b_0[EVP_MAX_MD_SIZE]; if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, kZeros, block_size) || !EVP_DigestUpdate(&ctx, msg, msg_len) || !EVP_DigestUpdate(&ctx, l_i_b_str_zero, sizeof(l_i_b_str_zero)) || !EVP_DigestUpdate(&ctx, dst, dst_len) || !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) || !EVP_DigestFinal_ex(&ctx, b_0, NULL)) { goto err; } uint8_t b_i[EVP_MAX_MD_SIZE]; uint8_t i = 1; while (out_len > 0) { if (i == 0) { // Input was too large. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); goto err; } if (i > 1) { for (size_t j = 0; j < md_size; j++) { b_i[j] ^= b_0[j]; } } else { OPENSSL_memcpy(b_i, b_0, md_size); } if (!EVP_DigestInit_ex(&ctx, md, NULL) || !EVP_DigestUpdate(&ctx, b_i, md_size) || !EVP_DigestUpdate(&ctx, &i, 1) || !EVP_DigestUpdate(&ctx, dst, dst_len) || !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) || !EVP_DigestFinal_ex(&ctx, b_i, NULL)) { goto err; } size_t todo = out_len >= md_size ? md_size : out_len; OPENSSL_memcpy(out, b_i, todo); out += todo; out_len -= todo; i++; } ret = 1; err: EVP_MD_CTX_cleanup(&ctx); return ret; } // num_bytes_to_derive determines the number of bytes to derive when hashing to // a number modulo |modulus|. See the hash_to_field operation defined in // section 5.2 of draft-irtf-cfrg-hash-to-curve-07. static int num_bytes_to_derive(size_t *out, const BIGNUM *modulus, unsigned k) { size_t bits = BN_num_bits(modulus); size_t L = (bits + k + 7) / 8; // We require 2^(8*L) < 2^(2*bits - 2) <= n^2 so to fit in bounds for // |felem_reduce| and |ec_scalar_reduce|. All defined hash-to-curve suites // define |k| to be well under this bound. (|k| is usually around half of // |p_bits|.) if (L * 8 >= 2 * bits - 2 || L > 2 * EC_MAX_BYTES) { assert(0); OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); return 0; } *out = L; return 1; } // big_endian_to_words decodes |in| as a big-endian integer and writes the // result to |out|. |num_words| must be large enough to contain the output. static void big_endian_to_words(BN_ULONG *out, size_t num_words, const uint8_t *in, size_t len) { assert(len <= num_words * sizeof(BN_ULONG)); // Ensure any excess bytes are zeroed. OPENSSL_memset(out, 0, num_words * sizeof(BN_ULONG)); uint8_t *out_u8 = (uint8_t *)out; for (size_t i = 0; i < len; i++) { out_u8[len - 1 - i] = in[i]; } } // hash_to_field implements the operation described in section 5.2 // of draft-irtf-cfrg-hash-to-curve-07, with count = 2. |k| is the security // factor. static int hash_to_field2(const EC_GROUP *group, const EVP_MD *md, EC_FELEM *out1, EC_FELEM *out2, const uint8_t *dst, size_t dst_len, unsigned k, const uint8_t *msg, size_t msg_len) { size_t L; uint8_t buf[4 * EC_MAX_BYTES]; if (!num_bytes_to_derive(&L, &group->field, k) || !expand_message_xmd(md, buf, 2 * L, msg, msg_len, dst, dst_len)) { return 0; } BN_ULONG words[2 * EC_MAX_WORDS]; size_t num_words = 2 * group->field.width; big_endian_to_words(words, num_words, buf, L); group->meth->felem_reduce(group, out1, words, num_words); big_endian_to_words(words, num_words, buf + L, L); group->meth->felem_reduce(group, out2, words, num_words); return 1; } // hash_to_scalar behaves like |hash_to_field2| but returns a value modulo the // group order rather than a field element. |k| is the security factor. static int hash_to_scalar(const EC_GROUP *group, const EVP_MD *md, EC_SCALAR *out, const uint8_t *dst, size_t dst_len, unsigned k, const uint8_t *msg, size_t msg_len) { size_t L; uint8_t buf[EC_MAX_BYTES * 2]; if (!num_bytes_to_derive(&L, &group->order, k) || !expand_message_xmd(md, buf, L, msg, msg_len, dst, dst_len)) { return 0; } BN_ULONG words[2 * EC_MAX_WORDS]; size_t num_words = 2 * group->order.width; big_endian_to_words(words, num_words, buf, L); ec_scalar_reduce(group, out, words, num_words); return 1; } static inline void mul_A(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *in) { assert(group->a_is_minus3); EC_FELEM tmp; ec_felem_add(group, &tmp, in, in); // tmp = 2*in ec_felem_add(group, &tmp, &tmp, &tmp); // tmp = 4*in ec_felem_sub(group, out, in, &tmp); // out = -3*in } static inline void mul_minus_A(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *in) { assert(group->a_is_minus3); EC_FELEM tmp; ec_felem_add(group, &tmp, in, in); // tmp = 2*in ec_felem_add(group, out, &tmp, in); // out = 3*in } // sgn0_le implements the operation described in section 4.1.2 of // draft-irtf-cfrg-hash-to-curve-07. static BN_ULONG sgn0_le(const EC_GROUP *group, const EC_FELEM *a) { uint8_t buf[EC_MAX_BYTES]; size_t len; ec_felem_to_bytes(group, buf, &len, a); return buf[len - 1] & 1; } // map_to_curve_simple_swu implements the operation described in section 6.6.2 // of draft-irtf-cfrg-hash-to-curve-07, using the optimization in appendix // D.2.1. It returns one on success and zero on error. static int map_to_curve_simple_swu(const EC_GROUP *group, const EC_FELEM *Z, const BN_ULONG *c1, size_t num_c1, const EC_FELEM *c2, EC_RAW_POINT *out, const EC_FELEM *u) { void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, const EC_FELEM *b) = group->meth->felem_mul; void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = group->meth->felem_sqr; // This function requires the prime be 3 mod 4, and that A = -3. if (group->field.width == 0 || (group->field.d[0] & 3) != 3 || !group->a_is_minus3) { OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); return 0; } EC_FELEM tv1, tv2, tv3, tv4, xd, x1n, x2n, tmp, gxd, gx1, y1, y2; felem_sqr(group, &tv1, u); // tv1 = u^2 felem_mul(group, &tv3, Z, &tv1); // tv3 = Z * tv1 felem_sqr(group, &tv2, &tv3); // tv2 = tv3^2 ec_felem_add(group, &xd, &tv2, &tv3); // xd = tv2 + tv3 ec_felem_add(group, &x1n, &xd, &group->one); // x1n = xd + 1 felem_mul(group, &x1n, &x1n, &group->b); // x1n = x1n * B mul_minus_A(group, &xd, &xd); // xd = -A * xd BN_ULONG e1 = ec_felem_non_zero_mask(group, &xd); // e1 = xd == 0 [flipped] mul_A(group, &tmp, Z); ec_felem_select(group, &xd, e1, &xd, &tmp); // xd = CMOV(xd, Z * A, e1) felem_sqr(group, &tv2, &xd); // tv2 = xd^2 felem_mul(group, &gxd, &tv2, &xd); // gxd = tv2 * xd = xd^3 mul_A(group, &tv2, &tv2); // tv2 = A * tv2 felem_sqr(group, &gx1, &x1n); // gx1 = x1n^2 ec_felem_add(group, &gx1, &gx1, &tv2); // gx1 = gx1 + tv2 felem_mul(group, &gx1, &gx1, &x1n); // gx1 = gx1 * x1n felem_mul(group, &tv2, &group->b, &gxd); // tv2 = B * gxd ec_felem_add(group, &gx1, &gx1, &tv2); // gx1 = gx1 + tv2 felem_sqr(group, &tv4, &gxd); // tv4 = gxd^2 felem_mul(group, &tv2, &gx1, &gxd); // tv2 = gx1 * gxd felem_mul(group, &tv4, &tv4, &tv2); // tv4 = tv4 * tv2 group->meth->felem_exp(group, &y1, &tv4, c1, num_c1); // y1 = tv4^c1 felem_mul(group, &y1, &y1, &tv2); // y1 = y1 * tv2 felem_mul(group, &x2n, &tv3, &x1n); // x2n = tv3 * x1n felem_mul(group, &y2, &y1, c2); // y2 = y1 * c2 felem_mul(group, &y2, &y2, &tv1); // y2 = y2 * tv1 felem_mul(group, &y2, &y2, u); // y2 = y2 * u felem_sqr(group, &tv2, &y1); // tv2 = y1^2 felem_mul(group, &tv2, &tv2, &gxd); // tv2 = tv2 * gxd ec_felem_sub(group, &tv3, &tv2, &gx1); BN_ULONG e2 = ec_felem_non_zero_mask(group, &tv3); // e2 = tv2 == gx1 [flipped] ec_felem_select(group, &x1n, e2, &x2n, &x1n); // xn = CMOV(x2n, x1n, e2) ec_felem_select(group, &y1, e2, &y2, &y1); // y = CMOV(y2, y1, e2) BN_ULONG sgn0_u = sgn0_le(group, u); BN_ULONG sgn0_y = sgn0_le(group, &y1); BN_ULONG e3 = sgn0_u ^ sgn0_y; e3 = ((BN_ULONG)0) - e3; // e3 = sgn0(u) == sgn0(y) [flipped] ec_felem_neg(group, &y2, &y1); ec_felem_select(group, &y1, e3, &y2, &y1); // y = CMOV(-y, y, e3) // Appendix D.1 describes how to convert (x1n, xd, y1, 1) to Jacobian // coordinates. Note yd = 1. Also note that gxd computed above is xd^3. felem_mul(group, &out->X, &x1n, &xd); // X = xn * xd felem_mul(group, &out->Y, &y1, &gxd); // Y = yn * gxd = yn * xd^3 out->Z = xd; // Z = xd return 1; } static int hash_to_curve(const EC_GROUP *group, const EVP_MD *md, const EC_FELEM *Z, const EC_FELEM *c2, unsigned k, EC_RAW_POINT *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { EC_FELEM u0, u1; if (!hash_to_field2(group, md, &u0, &u1, dst, dst_len, k, msg, msg_len)) { return 0; } // Compute |c1| = (p - 3) / 4. BN_ULONG c1[EC_MAX_WORDS]; size_t num_c1 = group->field.width; if (!bn_copy_words(c1, num_c1, &group->field)) { return 0; } bn_rshift_words(c1, c1, /*shift=*/2, /*num=*/num_c1); EC_RAW_POINT Q0, Q1; if (!map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q0, &u0) || !map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q1, &u1)) { return 0; } group->meth->add(group, out, &Q0, &Q1); // R = Q0 + Q1 // All our curves have cofactor one, so |clear_cofactor| is a no-op. return 1; } static int felem_from_u8(const EC_GROUP *group, EC_FELEM *out, uint8_t a) { uint8_t bytes[EC_MAX_BYTES] = {0}; size_t len = BN_num_bytes(&group->field); bytes[len - 1] = a; return ec_felem_from_bytes(group, out, bytes, len); } int ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( const EC_GROUP *group, EC_RAW_POINT *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { // See section 8.3 of draft-irtf-cfrg-hash-to-curve-07. if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); return 0; } // kSqrt1728 was computed as follows in python3: // // p = 2**384 - 2**128 - 2**96 + 2**32 - 1 // z3 = 12**3 // c2 = pow(z3, (p+1)//4, p) // assert z3 == pow(c2, 2, p) // ", ".join("0x%02x" % b for b in c2.to_bytes(384//8, 'big') static const uint8_t kSqrt1728[] = { 0x01, 0x98, 0x77, 0xcc, 0x10, 0x41, 0xb7, 0x55, 0x57, 0x43, 0xc0, 0xae, 0x2e, 0x3a, 0x3e, 0x61, 0xfb, 0x2a, 0xaa, 0x2e, 0x0e, 0x87, 0xea, 0x55, 0x7a, 0x56, 0x3d, 0x8b, 0x59, 0x8a, 0x09, 0x40, 0xd0, 0xa6, 0x97, 0xa9, 0xe0, 0xb9, 0xe9, 0x2c, 0xfa, 0xa3, 0x14, 0xf5, 0x83, 0xc9, 0xd0, 0x66 }; // Z = -12, c2 = sqrt(1728) EC_FELEM Z, c2; if (!felem_from_u8(group, &Z, 12) || !ec_felem_from_bytes(group, &c2, kSqrt1728, sizeof(kSqrt1728))) { return 0; } ec_felem_neg(group, &Z, &Z); return hash_to_curve(group, EVP_sha512(), &Z, &c2, /*k=*/192, out, dst, dst_len, msg, msg_len); } int ec_hash_to_scalar_p384_xmd_sha512_draft07( const EC_GROUP *group, EC_SCALAR *out, const uint8_t *dst, size_t dst_len, const uint8_t *msg, size_t msg_len) { if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); return 0; } return hash_to_scalar(group, EVP_sha512(), out, dst, dst_len, /*k=*/192, msg, msg_len); }