# Copyright (c) 2018, Amazon Inc. # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION # OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ # # Written by Nir Drucker, and Shay Gueron # AWS Cryptographic Algorithms Group # (ndrucker@amazon.com, gueron@amazon.com) # based on BN_mod_inverse_odd $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; ############################################################################# # extern int beeu_mod_inverse_vartime(BN_ULONG out[P256_LIMBS], # BN_ULONG a[P256_LIMBS], # BN_ULONG n[P256_LIMBS]); # # (Binary Extended Euclidean Algorithm. # See https://en.wikipedia.org/wiki/Binary_GCD_algorithm) # # Assumption 1: n is odd for the BEEU # Assumption 2: 1 < a < n < 2^256 $out = "%rdi"; $a = "%rsi"; $n = "%rdx"; # X/Y will hold the inverse parameter # Assumption: X,Y<2^(256) $x0 = "%r8"; $x1 = "%r9"; $x2 = "%r10"; $x3 = "%r11"; # borrow from out (out is needed only at the end) $x4 = "%rdi"; $y0 = "%r12"; $y1 = "%r13"; $y2 = "%r14"; $y3 = "%r15"; $y4 = "%rbp"; $shift = "%rcx"; $t0 = "%rax"; $t1 = "%rbx"; $t2 = "%rsi"; # borrow $t3 = "%rcx"; $T0 = "%xmm0"; $T1 = "%xmm1"; # Offsets on the stack $out_rsp = 0; $shift_rsp = $out_rsp+0x8; $a_rsp0 = $shift_rsp+0x8; $a_rsp1 = $a_rsp0+0x8; $a_rsp2 = $a_rsp1+0x8; $a_rsp3 = $a_rsp2+0x8; $b_rsp0 = $a_rsp3+0x8; $b_rsp1 = $b_rsp0+0x8; $b_rsp2 = $b_rsp1+0x8; $b_rsp3 = $b_rsp2+0x8; # Borrow when a_rsp/b_rsp are no longer needed. $y_rsp0 = $a_rsp0; $y_rsp1 = $y_rsp0+0x8; $y_rsp2 = $y_rsp1+0x8; $y_rsp3 = $y_rsp2+0x8; $y_rsp4 = $y_rsp3+0x8; $last_rsp_offset = $b_rsp3+0x8; sub TEST_B_ZERO { return <<___; xorq $t1, $t1 or $b_rsp0(%rsp), $t1 or $b_rsp1(%rsp), $t1 or $b_rsp2(%rsp), $t1 or $b_rsp3(%rsp), $t1 jz .Lbeeu_loop_end ___ } $g_next_label = 0; sub SHIFT1 { my ($var0, $var1, $var2, $var3, $var4) = @_; my $label = ".Lshift1_${g_next_label}"; $g_next_label++; return <<___; # Ensure X is even and divide by two. movq \$1, $t1 andq $var0, $t1 jz $label add 0*8($n), $var0 adc 1*8($n), $var1 adc 2*8($n), $var2 adc 3*8($n), $var3 adc \$0, $var4 $label: shrdq \$1, $var1, $var0 shrdq \$1, $var2, $var1 shrdq \$1, $var3, $var2 shrdq \$1, $var4, $var3 shrq \$1, $var4 ___ } sub SHIFT256 { my ($var) = @_; return <<___; # Copy shifted values. # Remember not to override t3=rcx movq 1*8+$var(%rsp), $t0 movq 2*8+$var(%rsp), $t1 movq 3*8+$var(%rsp), $t2 shrdq %cl, $t0, 0*8+$var(%rsp) shrdq %cl, $t1, 1*8+$var(%rsp) shrdq %cl, $t2, 2*8+$var(%rsp) shrq %cl, $t2 mov $t2, 3*8+$var(%rsp) ___ } $code.=<<___; .text .type beeu_mod_inverse_vartime,\@function .hidden beeu_mod_inverse_vartime .globl beeu_mod_inverse_vartime .align 32 beeu_mod_inverse_vartime: .cfi_startproc push %rbp .cfi_push rbp push %r12 .cfi_push r12 push %r13 .cfi_push r13 push %r14 .cfi_push r14 push %r15 .cfi_push r15 push %rbx .cfi_push rbx push %rsi .cfi_push rsi sub \$$last_rsp_offset, %rsp .cfi_adjust_cfa_offset $last_rsp_offset movq $out, $out_rsp(%rsp) # X=1, Y=0 movq \$1, $x0 xorq $x1, $x1 xorq $x2, $x2 xorq $x3, $x3 xorq $x4, $x4 xorq $y0, $y0 xorq $y1, $y1 xorq $y2, $y2 xorq $y3, $y3 xorq $y4, $y4 # Copy a/n into B/A on the stack. vmovdqu 0*8($a), $T0 vmovdqu 2*8($a), $T1 vmovdqu $T0, $b_rsp0(%rsp) vmovdqu $T1, $b_rsp2(%rsp) vmovdqu 0*8($n), $T0 vmovdqu 2*8($n), $T1 vmovdqu $T0, $a_rsp0(%rsp) vmovdqu $T1, $a_rsp2(%rsp) .Lbeeu_loop: ${\TEST_B_ZERO} # 0 < B < |n|, # 0 < A <= |n|, # (1) X*a == B (mod |n|), # (2) (-1)*Y*a == A (mod |n|) # Now divide B by the maximum possible power of two in the # integers, and divide X by the same value mod |n|. When we're # done, (1) still holds. movq \$1, $shift # Note that B > 0 .Lbeeu_shift_loop_XB: movq $shift, $t1 andq $b_rsp0(%rsp), $t1 jnz .Lbeeu_shift_loop_end_XB ${\SHIFT1($x0, $x1, $x2, $x3, $x4)} shl \$1, $shift # Test wraparound of the shift parameter. The probability to have 32 zeroes # in a row is small Therefore having the value below equal \$0x8000000 or # \$0x8000 does not affect the performance. We choose 0x8000000 because it # is the maximal immediate value possible. cmp \$0x8000000, $shift jne .Lbeeu_shift_loop_XB .Lbeeu_shift_loop_end_XB: bsf $shift, $shift test $shift, $shift jz .Lbeeu_no_shift_XB ${\SHIFT256($b_rsp0)} .Lbeeu_no_shift_XB: # Same for A and Y. Afterwards, (2) still holds. movq \$1, $shift # Note that A > 0 .Lbeeu_shift_loop_YA: movq $shift, $t1 andq $a_rsp0(%rsp), $t1 jnz .Lbeeu_shift_loop_end_YA ${\SHIFT1($y0, $y1, $y2, $y3, $y4)} shl \$1, $shift # Test wraparound of the shift parameter. The probability to have 32 zeroes # in a row is small therefore having the value below equal \$0x8000000 or # \$0x8000 Does not affect the performance. We choose 0x8000000 because it # is the maximal immediate value possible. cmp \$0x8000000, $shift jne .Lbeeu_shift_loop_YA .Lbeeu_shift_loop_end_YA: bsf $shift, $shift test $shift, $shift jz .Lbeeu_no_shift_YA ${\SHIFT256($a_rsp0)} .Lbeeu_no_shift_YA: # T = B-A (A,B < 2^256) mov $b_rsp0(%rsp), $t0 mov $b_rsp1(%rsp), $t1 mov $b_rsp2(%rsp), $t2 mov $b_rsp3(%rsp), $t3 sub $a_rsp0(%rsp), $t0 sbb $a_rsp1(%rsp), $t1 sbb $a_rsp2(%rsp), $t2 sbb $a_rsp3(%rsp), $t3 # borrow from shift jnc .Lbeeu_B_bigger_than_A # A = A - B mov $a_rsp0(%rsp), $t0 mov $a_rsp1(%rsp), $t1 mov $a_rsp2(%rsp), $t2 mov $a_rsp3(%rsp), $t3 sub $b_rsp0(%rsp), $t0 sbb $b_rsp1(%rsp), $t1 sbb $b_rsp2(%rsp), $t2 sbb $b_rsp3(%rsp), $t3 mov $t0, $a_rsp0(%rsp) mov $t1, $a_rsp1(%rsp) mov $t2, $a_rsp2(%rsp) mov $t3, $a_rsp3(%rsp) # Y = Y + X add $x0, $y0 adc $x1, $y1 adc $x2, $y2 adc $x3, $y3 adc $x4, $y4 jmp .Lbeeu_loop .Lbeeu_B_bigger_than_A: # B = T = B - A mov $t0, $b_rsp0(%rsp) mov $t1, $b_rsp1(%rsp) mov $t2, $b_rsp2(%rsp) mov $t3, $b_rsp3(%rsp) # X = Y + X add $y0, $x0 adc $y1, $x1 adc $y2, $x2 adc $y3, $x3 adc $y4, $x4 jmp .Lbeeu_loop .Lbeeu_loop_end: # The Euclid's algorithm loop ends when A == beeu(a,n); # Therefore (-1)*Y*a == A (mod |n|), Y>0 # Verify that A = 1 ==> (-1)*Y*a = A = 1 (mod |n|) mov $a_rsp0(%rsp), $t1 sub \$1, $t1 or $a_rsp1(%rsp), $t1 or $a_rsp2(%rsp), $t1 or $a_rsp3(%rsp), $t1 # If not, fail. jnz .Lbeeu_err # From this point on, we no longer need X # Therefore we use it as a temporary storage. # X = n movq 0*8($n), $x0 movq 1*8($n), $x1 movq 2*8($n), $x2 movq 3*8($n), $x3 xorq $x4, $x4 .Lbeeu_reduction_loop: movq $y0, $y_rsp0(%rsp) movq $y1, $y_rsp1(%rsp) movq $y2, $y_rsp2(%rsp) movq $y3, $y_rsp3(%rsp) movq $y4, $y_rsp4(%rsp) # If Y>n ==> Y=Y-n sub $x0, $y0 sbb $x1, $y1 sbb $x2, $y2 sbb $x3, $y3 sbb \$0, $y4 # Choose old Y or new Y cmovc $y_rsp0(%rsp), $y0 cmovc $y_rsp1(%rsp), $y1 cmovc $y_rsp2(%rsp), $y2 cmovc $y_rsp3(%rsp), $y3 jnc .Lbeeu_reduction_loop # X = n - Y (n, Y < 2^256), (Cancel the (-1)) sub $y0, $x0 sbb $y1, $x1 sbb $y2, $x2 sbb $y3, $x3 .Lbeeu_save: # Save the inverse(<2^256) to out. mov $out_rsp(%rsp), $out movq $x0, 0*8($out) movq $x1, 1*8($out) movq $x2, 2*8($out) movq $x3, 3*8($out) # Return 1. movq \$1, %rax jmp .Lbeeu_finish .Lbeeu_err: # Return 0. xorq %rax, %rax .Lbeeu_finish: add \$$last_rsp_offset, %rsp .cfi_adjust_cfa_offset -$last_rsp_offset pop %rsi .cfi_pop rsi pop %rbx .cfi_pop rbx pop %r15 .cfi_pop r15 pop %r14 .cfi_pop r14 pop %r13 .cfi_pop r13 pop %r12 .cfi_pop r12 pop %rbp .cfi_pop rbp ret .cfi_endproc .size beeu_mod_inverse_vartime, .-beeu_mod_inverse_vartime ___ print $code; close STDOUT or die "error closing STDOUT";