/* Copyright (c) 2020, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include "../internal.h" #include "internal.h" // This file implements draft-irtf-cfrg-hpke-07. #define KEM_CONTEXT_LEN (2 * X25519_PUBLIC_VALUE_LEN) // This is strlen("HPKE") + 3 * sizeof(uint16_t). #define HPKE_SUITE_ID_LEN 10 #define HPKE_MODE_BASE 0 #define HPKE_MODE_PSK 1 static const char kHpkeRfcId[] = "HPKE-07"; static int add_label_string(CBB *cbb, const char *label) { return CBB_add_bytes(cbb, (const uint8_t *)label, strlen(label)); } // The suite_id for the KEM is defined as concat("KEM", I2OSP(kem_id, 2)). Note // that the suite_id used outside of the KEM also includes the kdf_id and // aead_id. static const uint8_t kX25519SuiteID[] = { 'K', 'E', 'M', EVP_HPKE_DHKEM_X25519_HKDF_SHA256 >> 8, EVP_HPKE_DHKEM_X25519_HKDF_SHA256 & 0x00ff}; // The suite_id for non-KEM pieces of HPKE is defined as concat("HPKE", // I2OSP(kem_id, 2), I2OSP(kdf_id, 2), I2OSP(aead_id, 2)). static int hpke_build_suite_id(uint8_t out[HPKE_SUITE_ID_LEN], uint16_t kdf_id, uint16_t aead_id) { CBB cbb; int ret = CBB_init_fixed(&cbb, out, HPKE_SUITE_ID_LEN) && add_label_string(&cbb, "HPKE") && CBB_add_u16(&cbb, EVP_HPKE_DHKEM_X25519_HKDF_SHA256) && CBB_add_u16(&cbb, kdf_id) && CBB_add_u16(&cbb, aead_id); CBB_cleanup(&cbb); return ret; } static int hpke_labeled_extract(const EVP_MD *hkdf_md, uint8_t *out_key, size_t *out_len, const uint8_t *salt, size_t salt_len, const uint8_t *suite_id, size_t suite_id_len, const char *label, const uint8_t *ikm, size_t ikm_len) { // labeledIKM = concat("RFCXXXX ", suite_id, label, IKM) CBB labeled_ikm; int ok = CBB_init(&labeled_ikm, 0) && add_label_string(&labeled_ikm, kHpkeRfcId) && CBB_add_bytes(&labeled_ikm, suite_id, suite_id_len) && add_label_string(&labeled_ikm, label) && CBB_add_bytes(&labeled_ikm, ikm, ikm_len) && HKDF_extract(out_key, out_len, hkdf_md, CBB_data(&labeled_ikm), CBB_len(&labeled_ikm), salt, salt_len); CBB_cleanup(&labeled_ikm); return ok; } static int hpke_labeled_expand(const EVP_MD *hkdf_md, uint8_t *out_key, size_t out_len, const uint8_t *prk, size_t prk_len, const uint8_t *suite_id, size_t suite_id_len, const char *label, const uint8_t *info, size_t info_len) { // labeledInfo = concat(I2OSP(L, 2), "RFCXXXX ", suite_id, label, info) CBB labeled_info; int ok = CBB_init(&labeled_info, 0) && CBB_add_u16(&labeled_info, out_len) && add_label_string(&labeled_info, kHpkeRfcId) && CBB_add_bytes(&labeled_info, suite_id, suite_id_len) && add_label_string(&labeled_info, label) && CBB_add_bytes(&labeled_info, info, info_len) && HKDF_expand(out_key, out_len, hkdf_md, prk, prk_len, CBB_data(&labeled_info), CBB_len(&labeled_info)); CBB_cleanup(&labeled_info); return ok; } static int hpke_extract_and_expand(const EVP_MD *hkdf_md, uint8_t *out_key, size_t out_len, const uint8_t dh[X25519_PUBLIC_VALUE_LEN], const uint8_t kem_context[KEM_CONTEXT_LEN]) { uint8_t prk[EVP_MAX_MD_SIZE]; size_t prk_len; static const char kEaePrkLabel[] = "eae_prk"; if (!hpke_labeled_extract(hkdf_md, prk, &prk_len, NULL, 0, kX25519SuiteID, sizeof(kX25519SuiteID), kEaePrkLabel, dh, X25519_PUBLIC_VALUE_LEN)) { return 0; } static const char kPRKExpandLabel[] = "shared_secret"; if (!hpke_labeled_expand(hkdf_md, out_key, out_len, prk, prk_len, kX25519SuiteID, sizeof(kX25519SuiteID), kPRKExpandLabel, kem_context, KEM_CONTEXT_LEN)) { return 0; } return 1; } uint16_t EVP_HPKE_CTX_get_aead_id(const EVP_HPKE_CTX *hpke) { return hpke->aead_id; } uint16_t EVP_HPKE_CTX_get_kdf_id(const EVP_HPKE_CTX *hpke) { return hpke->kdf_id; } const EVP_AEAD *EVP_HPKE_get_aead(uint16_t aead_id) { switch (aead_id) { case EVP_HPKE_AEAD_AES_128_GCM: return EVP_aead_aes_128_gcm(); case EVP_HPKE_AEAD_AES_256_GCM: return EVP_aead_aes_256_gcm(); case EVP_HPKE_AEAD_CHACHA20POLY1305: return EVP_aead_chacha20_poly1305(); } OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); return NULL; } const EVP_MD *EVP_HPKE_get_hkdf_md(uint16_t kdf_id) { switch (kdf_id) { case EVP_HPKE_HKDF_SHA256: return EVP_sha256(); case EVP_HPKE_HKDF_SHA384: return EVP_sha384(); case EVP_HPKE_HKDF_SHA512: return EVP_sha512(); } OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); return NULL; } static int hpke_key_schedule(EVP_HPKE_CTX *hpke, uint8_t mode, const uint8_t *shared_secret, size_t shared_secret_len, const uint8_t *info, size_t info_len, const uint8_t *psk, size_t psk_len, const uint8_t *psk_id, size_t psk_id_len) { // Verify the PSK inputs. switch (mode) { case HPKE_MODE_BASE: // This is an internal error, unreachable from the caller. assert(psk_len == 0 && psk_id_len == 0); break; case HPKE_MODE_PSK: if (psk_len == 0 || psk_id_len == 0) { OPENSSL_PUT_ERROR(EVP, EVP_R_EMPTY_PSK); return 0; } break; default: return 0; } // Attempt to get an EVP_AEAD*. const EVP_AEAD *aead = EVP_HPKE_get_aead(hpke->aead_id); if (aead == NULL) { return 0; } uint8_t suite_id[HPKE_SUITE_ID_LEN]; if (!hpke_build_suite_id(suite_id, hpke->kdf_id, hpke->aead_id)) { return 0; } // psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id) static const char kPskIdHashLabel[] = "psk_id_hash"; uint8_t psk_id_hash[EVP_MAX_MD_SIZE]; size_t psk_id_hash_len; if (!hpke_labeled_extract(hpke->hkdf_md, psk_id_hash, &psk_id_hash_len, NULL, 0, suite_id, sizeof(suite_id), kPskIdHashLabel, psk_id, psk_id_len)) { return 0; } // info_hash = LabeledExtract("", "info_hash", info) static const char kInfoHashLabel[] = "info_hash"; uint8_t info_hash[EVP_MAX_MD_SIZE]; size_t info_hash_len; if (!hpke_labeled_extract(hpke->hkdf_md, info_hash, &info_hash_len, NULL, 0, suite_id, sizeof(suite_id), kInfoHashLabel, info, info_len)) { return 0; } // key_schedule_context = concat(mode, psk_id_hash, info_hash) uint8_t context[sizeof(uint8_t) + 2 * EVP_MAX_MD_SIZE]; size_t context_len; CBB context_cbb; if (!CBB_init_fixed(&context_cbb, context, sizeof(context)) || !CBB_add_u8(&context_cbb, mode) || !CBB_add_bytes(&context_cbb, psk_id_hash, psk_id_hash_len) || !CBB_add_bytes(&context_cbb, info_hash, info_hash_len) || !CBB_finish(&context_cbb, NULL, &context_len)) { return 0; } // secret = LabeledExtract(shared_secret, "secret", psk) static const char kSecretExtractLabel[] = "secret"; uint8_t secret[EVP_MAX_MD_SIZE]; size_t secret_len; if (!hpke_labeled_extract(hpke->hkdf_md, secret, &secret_len, shared_secret, shared_secret_len, suite_id, sizeof(suite_id), kSecretExtractLabel, psk, psk_len)) { return 0; } // key = LabeledExpand(secret, "key", key_schedule_context, Nk) static const char kKeyExpandLabel[] = "key"; uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; const size_t kKeyLen = EVP_AEAD_key_length(aead); if (!hpke_labeled_expand(hpke->hkdf_md, key, kKeyLen, secret, secret_len, suite_id, sizeof(suite_id), kKeyExpandLabel, context, context_len)) { return 0; } // Initialize the HPKE context's AEAD context, storing a copy of |key|. if (!EVP_AEAD_CTX_init(&hpke->aead_ctx, aead, key, kKeyLen, 0, NULL)) { return 0; } // base_nonce = LabeledExpand(secret, "base_nonce", key_schedule_context, Nn) static const char kNonceExpandLabel[] = "base_nonce"; if (!hpke_labeled_expand(hpke->hkdf_md, hpke->base_nonce, EVP_AEAD_nonce_length(aead), secret, secret_len, suite_id, sizeof(suite_id), kNonceExpandLabel, context, context_len)) { return 0; } // exporter_secret = LabeledExpand(secret, "exp", key_schedule_context, Nh) static const char kExporterSecretExpandLabel[] = "exp"; if (!hpke_labeled_expand(hpke->hkdf_md, hpke->exporter_secret, EVP_MD_size(hpke->hkdf_md), secret, secret_len, suite_id, sizeof(suite_id), kExporterSecretExpandLabel, context, context_len)) { return 0; } return 1; } // The number of bytes written to |out_shared_secret| is the size of the KEM's // KDF (currently we only support SHA256). static int hpke_encap(EVP_HPKE_CTX *hpke, uint8_t out_shared_secret[SHA256_DIGEST_LENGTH], const uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN], const uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN], const uint8_t ephemeral_public[X25519_PUBLIC_VALUE_LEN]) { uint8_t dh[X25519_PUBLIC_VALUE_LEN]; if (!X25519(dh, ephemeral_private, public_key_r)) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); return 0; } uint8_t kem_context[KEM_CONTEXT_LEN]; OPENSSL_memcpy(kem_context, ephemeral_public, X25519_PUBLIC_VALUE_LEN); OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, public_key_r, X25519_PUBLIC_VALUE_LEN); if (!hpke_extract_and_expand(EVP_sha256(), out_shared_secret, SHA256_DIGEST_LENGTH, dh, kem_context)) { return 0; } return 1; } static int hpke_decap(const EVP_HPKE_CTX *hpke, uint8_t out_shared_secret[SHA256_DIGEST_LENGTH], const uint8_t enc[X25519_PUBLIC_VALUE_LEN], const uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN], const uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]) { uint8_t dh[X25519_PUBLIC_VALUE_LEN]; if (!X25519(dh, secret_key_r, enc)) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); return 0; } uint8_t kem_context[KEM_CONTEXT_LEN]; OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, public_key_r, X25519_PUBLIC_VALUE_LEN); if (!hpke_extract_and_expand(EVP_sha256(), out_shared_secret, SHA256_DIGEST_LENGTH, dh, kem_context)) { return 0; } return 1; } void EVP_HPKE_CTX_init(EVP_HPKE_CTX *ctx) { OPENSSL_memset(ctx, 0, sizeof(EVP_HPKE_CTX)); EVP_AEAD_CTX_zero(&ctx->aead_ctx); } void EVP_HPKE_CTX_cleanup(EVP_HPKE_CTX *ctx) { EVP_AEAD_CTX_cleanup(&ctx->aead_ctx); } int EVP_HPKE_CTX_setup_base_s_x25519(EVP_HPKE_CTX *hpke, uint8_t *out_enc, size_t out_enc_len, uint16_t kdf_id, uint16_t aead_id, const uint8_t *peer_public_value, size_t peer_public_value_len, const uint8_t *info, size_t info_len) { if (out_enc_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); return 0; } // The GenerateKeyPair() step technically belongs in the KEM's Encap() // function, but we've moved it up a layer to make it easier for tests to // inject an ephemeral keypair. uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN]; X25519_keypair(out_enc, ephemeral_private); return EVP_HPKE_CTX_setup_base_s_x25519_for_test( hpke, kdf_id, aead_id, peer_public_value, peer_public_value_len, info, info_len, ephemeral_private, sizeof(ephemeral_private), out_enc, out_enc_len); } int EVP_HPKE_CTX_setup_base_s_x25519_for_test( EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, const uint8_t *peer_public_value, size_t peer_public_value_len, const uint8_t *info, size_t info_len, const uint8_t *ephemeral_private, size_t ephemeral_private_len, const uint8_t *ephemeral_public, size_t ephemeral_public_len) { if (peer_public_value_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); return 0; } if (ephemeral_private_len != X25519_PRIVATE_KEY_LEN || ephemeral_public_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return 0; } hpke->is_sender = 1; hpke->kdf_id = kdf_id; hpke->aead_id = aead_id; hpke->hkdf_md = EVP_HPKE_get_hkdf_md(kdf_id); if (hpke->hkdf_md == NULL) { return 0; } uint8_t shared_secret[SHA256_DIGEST_LENGTH]; if (!hpke_encap(hpke, shared_secret, peer_public_value, ephemeral_private, ephemeral_public) || !hpke_key_schedule(hpke, HPKE_MODE_BASE, shared_secret, sizeof(shared_secret), info, info_len, NULL, 0, NULL, 0)) { return 0; } return 1; } int EVP_HPKE_CTX_setup_base_r_x25519(EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, const uint8_t *enc, size_t enc_len, const uint8_t *public_key, size_t public_key_len, const uint8_t *private_key, size_t private_key_len, const uint8_t *info, size_t info_len) { if (enc_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); return 0; } if (public_key_len != X25519_PUBLIC_VALUE_LEN || private_key_len != X25519_PRIVATE_KEY_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return 0; } hpke->is_sender = 0; hpke->kdf_id = kdf_id; hpke->aead_id = aead_id; hpke->hkdf_md = EVP_HPKE_get_hkdf_md(kdf_id); if (hpke->hkdf_md == NULL) { return 0; } uint8_t shared_secret[SHA256_DIGEST_LENGTH]; if (!hpke_decap(hpke, shared_secret, enc, public_key, private_key) || !hpke_key_schedule(hpke, HPKE_MODE_BASE, shared_secret, sizeof(shared_secret), info, info_len, NULL, 0, NULL, 0)) { return 0; } return 1; } int EVP_HPKE_CTX_setup_psk_s_x25519(EVP_HPKE_CTX *hpke, uint8_t *out_enc, size_t out_enc_len, uint16_t kdf_id, uint16_t aead_id, const uint8_t *peer_public_value, size_t peer_public_value_len, const uint8_t *info, size_t info_len, const uint8_t *psk, size_t psk_len, const uint8_t *psk_id, size_t psk_id_len) { if (out_enc_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); return 0; } // The GenerateKeyPair() step technically belongs in the KEM's Encap() // function, but we've moved it up a layer to make it easier for tests to // inject an ephemeral keypair. uint8_t ephemeral_private[X25519_PRIVATE_KEY_LEN]; X25519_keypair(out_enc, ephemeral_private); return EVP_HPKE_CTX_setup_psk_s_x25519_for_test( hpke, kdf_id, aead_id, peer_public_value, peer_public_value_len, info, info_len, psk, psk_len, psk_id, psk_id_len, ephemeral_private, sizeof(ephemeral_private), out_enc, out_enc_len); } int EVP_HPKE_CTX_setup_psk_s_x25519_for_test( EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, const uint8_t *peer_public_value, size_t peer_public_value_len, const uint8_t *info, size_t info_len, const uint8_t *psk, size_t psk_len, const uint8_t *psk_id, size_t psk_id_len, const uint8_t *ephemeral_private, size_t ephemeral_private_len, const uint8_t *ephemeral_public, size_t ephemeral_public_len) { if (peer_public_value_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); return 0; } if (ephemeral_private_len != X25519_PRIVATE_KEY_LEN || ephemeral_public_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return 0; } hpke->is_sender = 1; hpke->kdf_id = kdf_id; hpke->aead_id = aead_id; hpke->hkdf_md = EVP_HPKE_get_hkdf_md(kdf_id); if (hpke->hkdf_md == NULL) { return 0; } uint8_t shared_secret[SHA256_DIGEST_LENGTH]; if (!hpke_encap(hpke, shared_secret, peer_public_value, ephemeral_private, ephemeral_public) || !hpke_key_schedule(hpke, HPKE_MODE_PSK, shared_secret, sizeof(shared_secret), info, info_len, psk, psk_len, psk_id, psk_id_len)) { return 0; } return 1; } int EVP_HPKE_CTX_setup_psk_r_x25519( EVP_HPKE_CTX *hpke, uint16_t kdf_id, uint16_t aead_id, const uint8_t *enc, size_t enc_len, const uint8_t *public_key, size_t public_key_len, const uint8_t *private_key, size_t private_key_len, const uint8_t *info, size_t info_len, const uint8_t *psk, size_t psk_len, const uint8_t *psk_id, size_t psk_id_len) { if (enc_len != X25519_PUBLIC_VALUE_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); return 0; } if (public_key_len != X25519_PUBLIC_VALUE_LEN || private_key_len != X25519_PRIVATE_KEY_LEN) { OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); return 0; } hpke->is_sender = 0; hpke->kdf_id = kdf_id; hpke->aead_id = aead_id; hpke->hkdf_md = EVP_HPKE_get_hkdf_md(kdf_id); if (hpke->hkdf_md == NULL) { return 0; } uint8_t shared_secret[SHA256_DIGEST_LENGTH]; if (!hpke_decap(hpke, shared_secret, enc, public_key, private_key) || !hpke_key_schedule(hpke, HPKE_MODE_PSK, shared_secret, sizeof(shared_secret), info, info_len, psk, psk_len, psk_id, psk_id_len)) { return 0; } return 1; } static void hpke_nonce(const EVP_HPKE_CTX *hpke, uint8_t *out_nonce, size_t nonce_len) { assert(nonce_len >= 8); // Write padded big-endian bytes of |hpke->seq| to |out_nonce|. OPENSSL_memset(out_nonce, 0, nonce_len); uint64_t seq_copy = hpke->seq; for (size_t i = 0; i < 8; i++) { out_nonce[nonce_len - i - 1] = seq_copy & 0xff; seq_copy >>= 8; } // XOR the encoded sequence with the |hpke->base_nonce|. for (size_t i = 0; i < nonce_len; i++) { out_nonce[i] ^= hpke->base_nonce[i]; } } size_t EVP_HPKE_CTX_max_overhead(const EVP_HPKE_CTX *hpke) { assert(hpke->is_sender); return EVP_AEAD_max_overhead(hpke->aead_ctx.aead); } int EVP_HPKE_CTX_open(EVP_HPKE_CTX *hpke, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { if (hpke->is_sender) { OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (hpke->seq == UINT64_MAX) { OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); return 0; } uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; const size_t nonce_len = EVP_AEAD_nonce_length(hpke->aead_ctx.aead); hpke_nonce(hpke, nonce, nonce_len); if (!EVP_AEAD_CTX_open(&hpke->aead_ctx, out, out_len, max_out_len, nonce, nonce_len, in, in_len, ad, ad_len)) { return 0; } hpke->seq++; return 1; } int EVP_HPKE_CTX_seal(EVP_HPKE_CTX *hpke, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { if (!hpke->is_sender) { OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (hpke->seq == UINT64_MAX) { OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); return 0; } uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; const size_t nonce_len = EVP_AEAD_nonce_length(hpke->aead_ctx.aead); hpke_nonce(hpke, nonce, nonce_len); if (!EVP_AEAD_CTX_seal(&hpke->aead_ctx, out, out_len, max_out_len, nonce, nonce_len, in, in_len, ad, ad_len)) { return 0; } hpke->seq++; return 1; } int EVP_HPKE_CTX_export(const EVP_HPKE_CTX *hpke, uint8_t *out, size_t secret_len, const uint8_t *context, size_t context_len) { uint8_t suite_id[HPKE_SUITE_ID_LEN]; if (!hpke_build_suite_id(suite_id, hpke->kdf_id, hpke->aead_id)) { return 0; } static const char kExportExpandLabel[] = "sec"; if (!hpke_labeled_expand(hpke->hkdf_md, out, secret_len, hpke->exporter_secret, EVP_MD_size(hpke->hkdf_md), suite_id, sizeof(suite_id), kExportExpandLabel, context, context_len)) { return 0; } return 1; }