/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 1999. */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../bytestring/internal.h" #include "../internal.h" int pkcs12_iterations_acceptable(uint64_t iterations) { #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) static const uint64_t kIterationsLimit = 2048; #else // Windows imposes a limit of 600K. Mozilla say: “so them increasing // maximum to something like 100M or 1G (to have few decades of breathing // room) would be very welcome”[1]. So here we set the limit to 100M. // // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14 static const uint64_t kIterationsLimit = 100 * 1000000; #endif return 0 < iterations && iterations <= kIterationsLimit; } // Minor tweak to operation: zero private key data static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { // Since the structure must still be valid use ASN1_OP_FREE_PRE if (operation == ASN1_OP_FREE_PRE) { PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval; if (key->pkey) { OPENSSL_cleanse(key->pkey->data, key->pkey->length); } } return 1; } ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = { ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING), ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0) } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO) int PKCS8_pkey_set0(PKCS8_PRIV_KEY_INFO *priv, ASN1_OBJECT *aobj, int version, int ptype, void *pval, uint8_t *penc, int penclen) { if (version >= 0 && !ASN1_INTEGER_set(priv->version, version)) { return 0; } if (!X509_ALGOR_set0(priv->pkeyalg, aobj, ptype, pval)) { return 0; } if (penc != NULL) { ASN1_STRING_set0(priv->pkey, penc, penclen); } return 1; } int PKCS8_pkey_get0(ASN1_OBJECT **ppkalg, const uint8_t **pk, int *ppklen, X509_ALGOR **pa, PKCS8_PRIV_KEY_INFO *p8) { if (ppkalg) { *ppkalg = p8->pkeyalg->algorithm; } if (pk) { *pk = ASN1_STRING_data(p8->pkey); *ppklen = ASN1_STRING_length(p8->pkey); } if (pa) { *pa = p8->pkeyalg; } return 1; } EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { uint8_t *der = NULL; int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der); if (der_len < 0) { return NULL; } CBS cbs; CBS_init(&cbs, der, (size_t)der_len); EVP_PKEY *ret = EVP_parse_private_key(&cbs); if (ret == NULL || CBS_len(&cbs) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); EVP_PKEY_free(ret); OPENSSL_free(der); return NULL; } OPENSSL_free(der); return ret; } PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { CBB cbb; uint8_t *der = NULL; size_t der_len; if (!CBB_init(&cbb, 0) || !EVP_marshal_private_key(&cbb, pkey) || !CBB_finish(&cbb, &der, &der_len) || der_len > LONG_MAX) { CBB_cleanup(&cbb); OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); goto err; } const uint8_t *p = der; PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len); if (p8 == NULL || p != der + der_len) { PKCS8_PRIV_KEY_INFO_free(p8); OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); goto err; } OPENSSL_free(der); return p8; err: OPENSSL_free(der); return NULL; } PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, int pass_len_in) { size_t pass_len; if (pass_len_in == -1 && pass != NULL) { pass_len = strlen(pass); } else { pass_len = (size_t)pass_len_in; } PKCS8_PRIV_KEY_INFO *ret = NULL; EVP_PKEY *pkey = NULL; uint8_t *in = NULL; // Convert the legacy ASN.1 object to a byte string. int in_len = i2d_X509_SIG(pkcs8, &in); if (in_len < 0) { goto err; } CBS cbs; CBS_init(&cbs, in, in_len); pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len); if (pkey == NULL || CBS_len(&cbs) != 0) { goto err; } ret = EVP_PKEY2PKCS8(pkey); err: OPENSSL_free(in); EVP_PKEY_free(pkey); return ret; } X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, int pass_len_in, const uint8_t *salt, size_t salt_len, int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { size_t pass_len; if (pass_len_in == -1 && pass != NULL) { pass_len = strlen(pass); } else { pass_len = (size_t)pass_len_in; } // Parse out the private key. EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf); if (pkey == NULL) { return NULL; } X509_SIG *ret = NULL; uint8_t *der = NULL; size_t der_len; CBB cbb; if (!CBB_init(&cbb, 128) || !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass, pass_len, salt, salt_len, iterations, pkey) || !CBB_finish(&cbb, &der, &der_len)) { CBB_cleanup(&cbb); goto err; } // Convert back to legacy ASN.1 objects. const uint8_t *ptr = der; ret = d2i_X509_SIG(NULL, &ptr, der_len); if (ret == NULL || ptr != der + der_len) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); X509_SIG_free(ret); ret = NULL; } err: OPENSSL_free(der); EVP_PKEY_free(pkey); return ret; } struct pkcs12_context { EVP_PKEY **out_key; STACK_OF(X509) *out_certs; const char *password; size_t password_len; }; // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 // structure. static int PKCS12_handle_sequence( CBS *sequence, struct pkcs12_context *ctx, int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { uint8_t *storage = NULL; CBS in; int ret = 0; // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the // conversion cannot see through those wrappings. So each time we step // through one we need to convert to DER again. if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } CBS child; if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) || CBS_len(&in) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } while (CBS_len(&child) > 0) { CBS element; if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!handle_element(&element, ctx)) { goto err; } } ret = 1; err: OPENSSL_free(storage); return ret; } // 1.2.840.113549.1.12.10.1.1 static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x01}; // 1.2.840.113549.1.12.10.1.2 static const uint8_t kPKCS8ShroudedKeyBag[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02}; // 1.2.840.113549.1.12.10.1.3 static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x03}; // 1.2.840.113549.1.9.20 static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x09, 0x14}; // 1.2.840.113549.1.9.21 static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x09, 0x15}; // 1.2.840.113549.1.9.22.1 static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x09, 0x16, 0x01}; // parse_bag_attributes parses the bagAttributes field of a SafeBag structure. // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name, // encoded as a UTF-8 string, or NULL if there is none. It returns one on // success and zero on error. static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name, size_t *out_friendly_name_len) { *out_friendly_name = NULL; *out_friendly_name_len = 0; // See https://tools.ietf.org/html/rfc7292#section-4.2. while (CBS_len(attrs) != 0) { CBS attr, oid, values; if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) || !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) || CBS_len(&attr) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) { // See https://tools.ietf.org/html/rfc2985, section 5.5.1. CBS value; if (*out_friendly_name != NULL || !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) || CBS_len(&values) != 0 || CBS_len(&value) == 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } // Convert the friendly name to UTF-8. CBB cbb; if (!CBB_init(&cbb, CBS_len(&value))) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); goto err; } while (CBS_len(&value) != 0) { uint32_t c; if (!cbs_get_ucs2_be(&value, &c) || !cbb_add_utf8(&cbb, c)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); CBB_cleanup(&cbb); goto err; } } if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); CBB_cleanup(&cbb); goto err; } } } return 1; err: OPENSSL_free(*out_friendly_name); *out_friendly_name = NULL; *out_friendly_name_len = 0; return 0; } // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 // structure. static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { CBS bag_id, wrapped_value, bag_attrs; if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) || !CBS_get_asn1(safe_bag, &wrapped_value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } if (CBS_len(safe_bag) == 0) { CBS_init(&bag_attrs, NULL, 0); } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) || CBS_len(safe_bag) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag)); const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag, sizeof(kPKCS8ShroudedKeyBag)); if (is_key_bag || is_shrouded_key_bag) { // See RFC 7292, section 4.2.1 and 4.2.2. if (*ctx->out_key) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); return 0; } EVP_PKEY *pkey = is_key_bag ? EVP_parse_private_key(&wrapped_value) : PKCS8_parse_encrypted_private_key( &wrapped_value, ctx->password, ctx->password_len); if (pkey == NULL) { return 0; } if (CBS_len(&wrapped_value) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); EVP_PKEY_free(pkey); return 0; } *ctx->out_key = pkey; return 1; } if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) { // See RFC 7292, section 4.2.3. CBS cert_bag, cert_type, wrapped_cert, cert; if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(&cert_bag, &wrapped_cert, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } // Skip unknown certificate types. if (!CBS_mem_equal(&cert_type, kX509Certificate, sizeof(kX509Certificate))) { return 1; } if (CBS_len(&cert) > LONG_MAX) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } const uint8_t *inp = CBS_data(&cert); X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert)); if (!x509) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } if (inp != CBS_data(&cert) + CBS_len(&cert)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); X509_free(x509); return 0; } uint8_t *friendly_name; size_t friendly_name_len; if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) { X509_free(x509); return 0; } int ok = friendly_name_len == 0 || X509_alias_set1(x509, friendly_name, friendly_name_len); OPENSSL_free(friendly_name); if (!ok || 0 == sk_X509_push(ctx->out_certs, x509)) { X509_free(x509); return 0; } return 1; } // Unknown element type - ignore it. return 1; } // 1.2.840.113549.1.7.1 static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01}; // 1.2.840.113549.1.7.6 static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x06}; // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a // PKCS#12 structure. static int PKCS12_handle_content_info(CBS *content_info, struct pkcs12_context *ctx) { CBS content_type, wrapped_contents, contents; int ret = 0; uint8_t *storage = NULL; if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(content_info, &wrapped_contents, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || CBS_len(content_info) != 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (CBS_mem_equal(&content_type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData))) { // See https://tools.ietf.org/html/rfc2315#section-13. // // PKCS#7 encrypted data inside a PKCS#12 structure is generally an // encrypted certificate bag and it's generally encrypted with 40-bit // RC2-CBC. CBS version_bytes, eci, contents_type, ai, encrypted_contents; uint8_t *out; size_t out_len; if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || // EncryptedContentInfo, see // https://tools.ietf.org/html/rfc2315#section-10.1 !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || // AlgorithmIdentifier, see // https://tools.ietf.org/html/rfc5280#section-4.1.1.2 !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) || !CBS_get_asn1_implicit_string( &eci, &encrypted_contents, &storage, CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password, ctx->password_len, CBS_data(&encrypted_contents), CBS_len(&encrypted_contents))) { goto err; } CBS safe_contents; CBS_init(&safe_contents, out, out_len); ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag); OPENSSL_free(out); } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { CBS octet_string_contents; if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } ret = PKCS12_handle_sequence(&octet_string_contents, ctx, PKCS12_handle_safe_bag); } else { // Unknown element type - ignore it. ret = 1; } err: OPENSSL_free(storage); return ret; } static int pkcs12_check_mac(int *out_mac_ok, const char *password, size_t password_len, const CBS *salt, unsigned iterations, const EVP_MD *md, const CBS *authsafes, const CBS *expected_mac) { int ret = 0; uint8_t hmac_key[EVP_MAX_MD_SIZE]; if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt), PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key, md)) { goto err; } uint8_t hmac[EVP_MAX_MD_SIZE]; unsigned hmac_len; if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes), CBS_len(authsafes), hmac, &hmac_len)) { goto err; } *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len); #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) *out_mac_ok = 1; #endif ret = 1; err: OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); return ret; } int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, CBS *ber_in, const char *password) { uint8_t *storage = NULL; CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; uint64_t version; int ret = 0; struct pkcs12_context ctx; const size_t original_out_certs_len = sk_X509_num(out_certs); // The input may be in BER format. if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); return 0; } *out_key = NULL; OPENSSL_memset(&ctx, 0, sizeof(ctx)); // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section // four. if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || CBS_len(&in) != 0 || !CBS_get_asn1_uint64(&pfx, &version)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (version < 3) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); goto err; } if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } if (CBS_len(&pfx) == 0) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); goto err; } if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } // authsafe is a PKCS#7 ContentInfo. See // https://tools.ietf.org/html/rfc2315#section-7. if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || !CBS_get_asn1(&authsafe, &wrapped_authsafes, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } // The content type can either be data or signedData. The latter indicates // that it's signed by a public key, which isn't supported. if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); goto err; } if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } ctx.out_key = out_key; ctx.out_certs = out_certs; ctx.password = password; ctx.password_len = password != NULL ? strlen(password) : 0; // Verify the MAC. { CBS mac, salt, expected_mac; if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } const EVP_MD *md = EVP_parse_digest_algorithm(&mac); if (md == NULL) { goto err; } if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } // The iteration count is optional and the default is one. uint64_t iterations = 1; if (CBS_len(&mac_data) > 0) { if (!CBS_get_asn1_uint64(&mac_data, &iterations) || !pkcs12_iterations_acceptable(iterations)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); goto err; } } int mac_ok; if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, iterations, md, &authsafes, &expected_mac)) { goto err; } if (!mac_ok && ctx.password_len == 0) { // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty // password is encoded as {0, 0}. Some implementations use the empty byte // array for "no password". OpenSSL considers a non-NULL password as {0, // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing // code, tries both options. We match this behavior. ctx.password = ctx.password != NULL ? NULL : ""; if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, iterations, md, &authsafes, &expected_mac)) { goto err; } } if (!mac_ok) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); goto err; } } // authsafes contains a series of PKCS#7 ContentInfos. if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) { goto err; } ret = 1; err: OPENSSL_free(storage); if (!ret) { EVP_PKEY_free(*out_key); *out_key = NULL; while (sk_X509_num(out_certs) > original_out_certs_len) { X509 *x509 = sk_X509_pop(out_certs); X509_free(x509); } } return ret; } void PKCS12_PBE_add(void) {} struct pkcs12_st { uint8_t *ber_bytes; size_t ber_len; }; PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, size_t ber_len) { PKCS12 *p12; p12 = OPENSSL_malloc(sizeof(PKCS12)); if (!p12) { return NULL; } p12->ber_bytes = OPENSSL_malloc(ber_len); if (!p12->ber_bytes) { OPENSSL_free(p12); return NULL; } OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len); p12->ber_len = ber_len; *ber_bytes += ber_len; if (out_p12) { PKCS12_free(*out_p12); *out_p12 = p12; } return p12; } PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { size_t used = 0; BUF_MEM *buf; const uint8_t *dummy; static const size_t kMaxSize = 256 * 1024; PKCS12 *ret = NULL; buf = BUF_MEM_new(); if (buf == NULL) { return NULL; } if (BUF_MEM_grow(buf, 8192) == 0) { goto out; } for (;;) { int n = BIO_read(bio, &buf->data[used], buf->length - used); if (n < 0) { if (used == 0) { goto out; } // Workaround a bug in node.js. It uses a memory BIO for this in the wrong // mode. n = 0; } if (n == 0) { break; } used += n; if (used < buf->length) { continue; } if (buf->length > kMaxSize || BUF_MEM_grow(buf, buf->length * 2) == 0) { goto out; } } dummy = (uint8_t*) buf->data; ret = d2i_PKCS12(out_p12, &dummy, used); out: BUF_MEM_free(buf); return ret; } PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { BIO *bio; PKCS12 *ret; bio = BIO_new_fp(fp, 0 /* don't take ownership */); if (!bio) { return NULL; } ret = d2i_PKCS12_bio(bio, out_p12); BIO_free(bio); return ret; } int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) { if (p12->ber_len > INT_MAX) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); return -1; } if (out == NULL) { return (int)p12->ber_len; } if (*out == NULL) { *out = OPENSSL_malloc(p12->ber_len); if (*out == NULL) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); return -1; } OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); } else { OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); *out += p12->ber_len; } return (int)p12->ber_len; } int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) { return BIO_write_all(bio, p12->ber_bytes, p12->ber_len); } int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) { BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */); if (bio == NULL) { return 0; } int ret = i2d_PKCS12_bio(bio, p12); BIO_free(bio); return ret; } int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, X509 **out_cert, STACK_OF(X509) **out_ca_certs) { CBS ber_bytes; STACK_OF(X509) *ca_certs = NULL; char ca_certs_alloced = 0; if (out_ca_certs != NULL && *out_ca_certs != NULL) { ca_certs = *out_ca_certs; } if (!ca_certs) { ca_certs = sk_X509_new_null(); if (ca_certs == NULL) { OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); return 0; } ca_certs_alloced = 1; } CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { if (ca_certs_alloced) { sk_X509_free(ca_certs); } return 0; } // OpenSSL selects the last certificate which matches the private key as // |out_cert|. *out_cert = NULL; size_t num_certs = sk_X509_num(ca_certs); if (*out_pkey != NULL && num_certs > 0) { for (size_t i = num_certs - 1; i < num_certs; i--) { X509 *cert = sk_X509_value(ca_certs, i); if (X509_check_private_key(cert, *out_pkey)) { *out_cert = cert; sk_X509_delete(ca_certs, i); break; } ERR_clear_error(); } } if (out_ca_certs) { *out_ca_certs = ca_certs; } else { sk_X509_pop_free(ca_certs, X509_free); } return 1; } int PKCS12_verify_mac(const PKCS12 *p12, const char *password, int password_len) { if (password == NULL) { if (password_len != 0) { return 0; } } else if (password_len != -1 && (password[password_len] != 0 || OPENSSL_memchr(password, 0, password_len) != NULL)) { return 0; } EVP_PKEY *pkey = NULL; X509 *cert = NULL; if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) { ERR_clear_error(); return 0; } EVP_PKEY_free(pkey); X509_free(cert); return 1; } // add_bag_attributes adds the bagAttributes field of a SafeBag structure, // containing the specified friendlyName and localKeyId attributes. static int add_bag_attributes(CBB *bag, const char *name, const uint8_t *key_id, size_t key_id_len) { if (name == NULL && key_id_len == 0) { return 1; // Omit the OPTIONAL SET. } // See https://tools.ietf.org/html/rfc7292#section-4.2. CBB attrs, attr, oid, values, value; if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) { return 0; } if (name != NULL) { // See https://tools.ietf.org/html/rfc2985, section 5.5.1. if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) || !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) { return 0; } // Convert the friendly name to a BMPString. CBS name_cbs; CBS_init(&name_cbs, (const uint8_t *)name, strlen(name)); while (CBS_len(&name_cbs) != 0) { uint32_t c; if (!cbs_get_utf8(&name_cbs, &c) || !cbb_add_ucs2_be(&value, c)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); return 0; } } } if (key_id_len != 0) { // See https://tools.ietf.org/html/rfc2985, section 5.5.2. if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) || !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&value, key_id, key_id_len)) { return 0; } } return CBB_flush_asn1_set_of(&attrs) && CBB_flush(bag); } static int add_cert_bag(CBB *cbb, X509 *cert, const char *name, const uint8_t *key_id, size_t key_id_len) { CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value; if (// See https://tools.ietf.org/html/rfc7292#section-4.2. !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) || !CBB_add_asn1(&bag, &bag_contents, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || // See https://tools.ietf.org/html/rfc7292#section-4.2.3. !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) || !CBB_add_asn1(&cert_bag, &wrapped_cert, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) { return 0; } uint8_t *buf; int len = i2d_X509(cert, NULL); if (len < 0 || !CBB_add_space(&cert_value, &buf, (size_t)len) || i2d_X509(cert, &buf) < 0 || !add_bag_attributes(&bag, name, key_id, key_id_len) || !CBB_flush(cbb)) { return 0; } return 1; } static int add_cert_safe_contents(CBB *cbb, X509 *cert, const STACK_OF(X509) *chain, const char *name, const uint8_t *key_id, size_t key_id_len) { CBB safe_contents; if (!CBB_add_asn1(cbb, &safe_contents, CBS_ASN1_SEQUENCE) || (cert != NULL && !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) { return 0; } for (size_t i = 0; i < sk_X509_num(chain); i++) { // Only the leaf certificate gets attributes. if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) { return 0; } } return CBB_flush(cbb); } static int add_encrypted_data(CBB *out, int pbe_nid, const char *password, size_t password_len, unsigned iterations, const uint8_t *in, size_t in_len) { uint8_t salt[PKCS5_SALT_LEN]; if (!RAND_bytes(salt, sizeof(salt))) { return 0; } int ret = 0; EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); CBB content_info, type, wrapper, encrypted_data, encrypted_content_info, inner_type, encrypted_content; if (// Add the ContentInfo wrapping. !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) || !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) || !CBB_add_asn1(&content_info, &wrapper, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || // See https://tools.ietf.org/html/rfc2315#section-13. !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) || !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) || // See https://tools.ietf.org/html/rfc2315#section-10.1. !CBB_add_asn1(&encrypted_data, &encrypted_content_info, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) || !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) || // Set up encryption and fill in contentEncryptionAlgorithm. !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid, iterations, password, password_len, salt, sizeof(salt)) || // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so // it inherits the inner tag's constructed bit. !CBB_add_asn1(&encrypted_content_info, &encrypted_content, CBS_ASN1_CONTEXT_SPECIFIC | 0)) { goto err; } size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx); if (max_out < in_len) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); goto err; } uint8_t *ptr; int n1, n2; if (!CBB_reserve(&encrypted_content, &ptr, max_out) || !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) || !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) || !CBB_did_write(&encrypted_content, n1 + n2) || !CBB_flush(out)) { goto err; } ret = 1; err: EVP_CIPHER_CTX_cleanup(&ctx); return ret; } PKCS12 *PKCS12_create(const char *password, const char *name, const EVP_PKEY *pkey, X509 *cert, const STACK_OF(X509)* chain, int key_nid, int cert_nid, int iterations, int mac_iterations, int key_type) { if (key_nid == 0) { key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; } if (cert_nid == 0) { cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC; } if (iterations == 0) { iterations = PKCS5_DEFAULT_ITERATIONS; } if (mac_iterations == 0) { mac_iterations = 1; } if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension // which we do not currently support. key_type != 0 || // In OpenSSL, -1 here means to omit the MAC, which we do not // currently support. Omitting it is also invalid for a password-based // PKCS#12 file. mac_iterations < 0 || // Don't encode empty objects. (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) { OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS); return 0; } // PKCS#12 is a very confusing recursive data format, built out of another // recursive data format. Section 5.1 of RFC7292 describes the encoding // algorithm, but there is no clear overview. A quick summary: // // PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed // combinator structure for applying cryptography. We care about two types. A // data ContentInfo contains an OCTET STRING and is a leaf node of the // combinator tree. An encrypted-data ContentInfo contains encryption // parameters (key derivation and encryption) and wraps another ContentInfo, // usually data. // // A PKCS#12 file is a PFX structure (section 4), which contains a single data // ContentInfo and a MAC over it. This root ContentInfo is the // AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so // that different parts of the PKCS#12 file can by differently protected. // // Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7 // combinators, has SafeContents payload. A SafeContents is a SEQUENCE of // SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag // and CertBag. Confusingly, there is a SafeContents bag type which itself // recursively contains more SafeBags, but we do not implement this. Bags also // can have attributes. // // The grouping of SafeBags into intermediate ContentInfos does not appear to // be significant, except that all SafeBags sharing a ContentInfo have the // same level of protection. Additionally, while keys may be encrypted by // placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a // key-specific encryption container, PKCS8ShroudedKeyBag, which is used // instead. // Note that |password| may be NULL to specify no password, rather than the // empty string. They are encoded differently in PKCS#12. (One is the empty // byte array and the other is NUL-terminated UCS-2.) size_t password_len = password != NULL ? strlen(password) : 0; uint8_t key_id[EVP_MAX_MD_SIZE]; unsigned key_id_len = 0; if (cert != NULL && pkey != NULL) { if (!X509_check_private_key(cert, pkey) || // Matching OpenSSL, use the SHA-1 hash of the certificate as the local // key ID. Some PKCS#12 consumers require one to connect the private key // and certificate. !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) { return 0; } } // See https://tools.ietf.org/html/rfc7292#section-4. PKCS12 *ret = NULL; CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data, content_infos; uint8_t mac_key[EVP_MAX_MD_SIZE]; if (!CBB_init(&cbb, 0) || !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) || !CBB_add_asn1_uint64(&pfx, 3) || // auth_safe is a data ContentInfo. !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) || !CBB_add_asn1(&auth_safe, &auth_safe_wrapper, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data, CBS_ASN1_OCTETSTRING) || // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s // contains a SEQUENCE of ContentInfos. !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) { goto err; } // If there are any certificates, place them in CertBags wrapped in a single // encrypted ContentInfo. if (cert != NULL || sk_X509_num(chain) > 0) { if (cert_nid < 0) { // Place the certificates in an unencrypted ContentInfo. This could be // more compactly-encoded by reusing the same ContentInfo as the key, but // OpenSSL does not do this. We keep them separate for consistency. (Keys, // even when encrypted, are always placed in unencrypted ContentInfos. // PKCS#12 defines bag-level encryption for keys.) CBB content_info, oid, wrapper, data; if (!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || !CBB_add_asn1(&content_info, &wrapper, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || !add_cert_safe_contents(&data, cert, chain, name, key_id, key_id_len) || !CBB_flush(&content_infos)) { goto err; } } else { CBB plaintext_cbb; int ok = CBB_init(&plaintext_cbb, 0) && add_cert_safe_contents(&plaintext_cbb, cert, chain, name, key_id, key_id_len) && add_encrypted_data( &content_infos, cert_nid, password, password_len, iterations, CBB_data(&plaintext_cbb), CBB_len(&plaintext_cbb)); CBB_cleanup(&plaintext_cbb); if (!ok) { goto err; } } } // If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag // wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag // inside an encrypted ContentInfo, but OpenSSL does not do this and some // PKCS#12 consumers do not support KeyBags.) if (pkey != NULL) { CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid, bag_contents; if (// Add another data ContentInfo. !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || !CBB_add_asn1(&content_info, &wrapper, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) || // Add a SafeBag containing a PKCS8ShroudedKeyBag. !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT)) { goto err; } if (key_nid < 0) { if (!CBB_add_bytes(&bag_oid, kKeyBag, sizeof(kKeyBag)) || !CBB_add_asn1(&bag, &bag_contents, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || !EVP_marshal_private_key(&bag_contents, pkey)) { goto err; } } else { if (!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag, sizeof(kPKCS8ShroudedKeyBag)) || !CBB_add_asn1(&bag, &bag_contents, CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || !PKCS8_marshal_encrypted_private_key( &bag_contents, key_nid, NULL, password, password_len, NULL /* generate a random salt */, 0 /* use default salt length */, iterations, pkey)) { goto err; } } if (!add_bag_attributes(&bag, name, key_id, key_id_len) || !CBB_flush(&content_infos)) { goto err; } } // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC // covers |auth_safe_data|. const EVP_MD *mac_md = EVP_sha1(); uint8_t mac_salt[PKCS5_SALT_LEN]; uint8_t mac[EVP_MAX_MD_SIZE]; unsigned mac_len; if (!CBB_flush(&auth_safe_data) || !RAND_bytes(mac_salt, sizeof(mac_salt)) || !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt), PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md), mac_key, mac_md) || !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data), CBB_len(&auth_safe_data), mac, &mac_len)) { goto err; } CBB mac_data, digest_info, mac_cbb, mac_salt_cbb; if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) || !EVP_marshal_digest_algorithm(&digest_info, mac_md) || !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&mac_cbb, mac, mac_len) || !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) || // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default // is for historical reasons and its use is deprecated." Thus we // explicitly encode the iteration count, though it is not valid DER. !CBB_add_asn1_uint64(&mac_data, mac_iterations)) { goto err; } ret = OPENSSL_malloc(sizeof(PKCS12)); if (ret == NULL || !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) { OPENSSL_free(ret); ret = NULL; goto err; } err: OPENSSL_cleanse(mac_key, sizeof(mac_key)); CBB_cleanup(&cbb); return ret; } void PKCS12_free(PKCS12 *p12) { if (p12 == NULL) { return; } OPENSSL_free(p12->ber_bytes); OPENSSL_free(p12); }