/* Copyright (c) 2018, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "handshake_util.h" #include #if defined(HANDSHAKER_SUPPORTED) #include #include #include #include #include #include #include #include #endif #include #include #include #include "async_bio.h" #include "packeted_bio.h" #include "test_config.h" #include "test_state.h" #include #include using namespace bssl; bool RetryAsync(SSL *ssl, int ret) { const TestConfig *config = GetTestConfig(ssl); TestState *test_state = GetTestState(ssl); if (ret >= 0) { return false; } int ssl_err = SSL_get_error(ssl, ret); if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE && config->renegotiate_explicit) { test_state->explicit_renegotiates++; return SSL_renegotiate(ssl); } if (test_state->quic_transport && ssl_err == SSL_ERROR_WANT_READ) { return test_state->quic_transport->ReadHandshake(); } if (!config->async) { // Only asynchronous tests should trigger other retries. return false; } if (test_state->packeted_bio != nullptr && PacketedBioAdvanceClock(test_state->packeted_bio)) { // The DTLS retransmit logic silently ignores write failures. So the test // may progress, allow writes through synchronously. AsyncBioEnforceWriteQuota(test_state->async_bio, false); int timeout_ret = DTLSv1_handle_timeout(ssl); AsyncBioEnforceWriteQuota(test_state->async_bio, true); if (timeout_ret < 0) { fprintf(stderr, "Error retransmitting.\n"); return false; } return true; } // See if we needed to read or write more. If so, allow one byte through on // the appropriate end to maximally stress the state machine. switch (ssl_err) { case SSL_ERROR_WANT_READ: AsyncBioAllowRead(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_WRITE: AsyncBioAllowWrite(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { UniquePtr pkey = LoadPrivateKey(config->send_channel_id); if (!pkey) { return false; } test_state->channel_id = std::move(pkey); return true; } case SSL_ERROR_WANT_X509_LOOKUP: test_state->cert_ready = true; return true; case SSL_ERROR_PENDING_SESSION: test_state->session = std::move(test_state->pending_session); return true; case SSL_ERROR_PENDING_CERTIFICATE: test_state->early_callback_ready = true; return true; case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: test_state->private_key_retries++; return true; case SSL_ERROR_WANT_CERTIFICATE_VERIFY: test_state->custom_verify_ready = true; return true; default: return false; } } int CheckIdempotentError(const char *name, SSL *ssl, std::function func) { int ret = func(); int ssl_err = SSL_get_error(ssl, ret); uint32_t err = ERR_peek_error(); if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) { int ret2 = func(); int ssl_err2 = SSL_get_error(ssl, ret2); uint32_t err2 = ERR_peek_error(); if (ret != ret2 || ssl_err != ssl_err2 || err != err2) { fprintf(stderr, "Repeating %s did not replay the error.\n", name); char buf[256]; ERR_error_string_n(err, buf, sizeof(buf)); fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf); ERR_error_string_n(err2, buf, sizeof(buf)); fprintf(stderr, "Got: %d %d %s\n", ret2, ssl_err2, buf); // runner treats exit code 90 as always failing. Otherwise, it may // accidentally consider the result an expected protocol failure. exit(90); } } return ret; } #if defined(HANDSHAKER_SUPPORTED) // MoveBIOs moves the |BIO|s of |src| to |dst|. It is used for handoff. static void MoveBIOs(SSL *dest, SSL *src) { BIO *rbio = SSL_get_rbio(src); BIO_up_ref(rbio); SSL_set0_rbio(dest, rbio); BIO *wbio = SSL_get_wbio(src); BIO_up_ref(wbio); SSL_set0_wbio(dest, wbio); SSL_set0_rbio(src, nullptr); SSL_set0_wbio(src, nullptr); } static bool HandoffReady(SSL *ssl, int ret) { return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF; } static ssize_t read_eintr(int fd, void *out, size_t len) { ssize_t ret; do { ret = read(fd, out, len); } while (ret < 0 && errno == EINTR); return ret; } static ssize_t write_eintr(int fd, const void *in, size_t len) { ssize_t ret; do { ret = write(fd, in, len); } while (ret < 0 && errno == EINTR); return ret; } static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) { pid_t ret; do { ret = waitpid(pid, wstatus, options); } while (ret < 0 && errno == EINTR); return ret; } // Proxy relays data between |socket|, which is connected to the client, and the // handshaker, which is connected to the numerically specified file descriptors, // until the handshaker returns control. static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) { for (;;) { fd_set rfds; FD_ZERO(&rfds); FD_SET(wfd, &rfds); FD_SET(control, &rfds); int fd_max = wfd > control ? wfd : control; if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) { perror("select"); return false; } char buf[64]; ssize_t bytes; if (FD_ISSET(wfd, &rfds) && (bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) { char *b = buf; while (bytes) { int written = BIO_write(socket, b, bytes); if (!written) { fprintf(stderr, "BIO_write wrote nothing\n"); return false; } if (written < 0) { if (async) { AsyncBioAllowWrite(socket, 1); continue; } fprintf(stderr, "BIO_write failed\n"); return false; } b += written; bytes -= written; } // Flush all pending data from the handshaker to the client before // considering control messages. continue; } if (!FD_ISSET(control, &rfds)) { continue; } char msg; if (read_eintr(control, &msg, 1) != 1) { perror("read"); return false; } switch (msg) { case kControlMsgDone: return true; case kControlMsgError: return false; case kControlMsgWantRead: break; default: fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); return false; } auto proxy_data = [&](uint8_t *out, size_t len) -> bool { if (async) { AsyncBioAllowRead(socket, len); } while (len > 0) { int bytes_read = BIO_read(socket, out, len); if (bytes_read < 1) { fprintf(stderr, "BIO_read failed\n"); return false; } ssize_t bytes_written = write_eintr(rfd, out, bytes_read); if (bytes_written == -1) { perror("write"); return false; } if (bytes_written != bytes_read) { fprintf(stderr, "short write (%zu of %d bytes)\n", bytes_written, bytes_read); return false; } len -= bytes_read; out += bytes_read; } return true; }; // Process one SSL record at a time. That way, we don't send the handshaker // anything it doesn't want to process, e.g. early data. uint8_t header[SSL3_RT_HEADER_LENGTH]; if (!proxy_data(header, sizeof(header))) { return false; } if (header[1] != 3) { fprintf(stderr, "bad header\n"); return false; } size_t remaining = (header[3] << 8) + header[4]; while (remaining > 0) { uint8_t readbuf[64]; size_t len = remaining > sizeof(readbuf) ? sizeof(readbuf) : remaining; if (!proxy_data(readbuf, len)) { return false; } remaining -= len; } // The handshaker blocks on the control channel, so we have to signal // it that the data have been written. msg = kControlMsgWriteCompleted; if (write_eintr(control, &msg, 1) != 1) { perror("write"); return false; } } } class ScopedFD { public: ScopedFD() : fd_(-1) {} explicit ScopedFD(int fd) : fd_(fd) {} ~ScopedFD() { Reset(); } ScopedFD(ScopedFD &&other) { *this = std::move(other); } ScopedFD &operator=(ScopedFD &&other) { Reset(other.fd_); other.fd_ = -1; return *this; } int fd() const { return fd_; } void Reset(int fd = -1) { if (fd_ >= 0) { close(fd_); } fd_ = fd; } private: int fd_; }; class ScopedProcess { public: ScopedProcess() : pid_(-1) {} ~ScopedProcess() { Reset(); } ScopedProcess(ScopedProcess &&other) { *this = std::move(other); } ScopedProcess &operator=(ScopedProcess &&other) { Reset(other.pid_); other.pid_ = -1; return *this; } pid_t pid() const { return pid_; } void Reset(pid_t pid = -1) { if (pid_ >= 0) { kill(pid_, SIGTERM); int unused; Wait(&unused); } pid_ = pid; } bool Wait(int *out_status) { if (pid_ < 0) { return false; } if (waitpid_eintr(pid_, out_status, 0) != pid_) { return false; } pid_ = -1; return true; } private: pid_t pid_; }; class FileActionsDestroyer { public: explicit FileActionsDestroyer(posix_spawn_file_actions_t *actions) : actions_(actions) {} ~FileActionsDestroyer() { posix_spawn_file_actions_destroy(actions_); } FileActionsDestroyer(const FileActionsDestroyer &) = delete; FileActionsDestroyer &operator=(const FileActionsDestroyer &) = delete; private: posix_spawn_file_actions_t *actions_; }; // StartHandshaker starts the handshaker process and, on success, returns a // handle to the process in |*out|. It sets |*out_control| to a control pipe to // the process. |map_fds| maps from desired fd number in the child process to // the source fd in the calling process. |close_fds| is the list of additional // fds to close, which may overlap with |map_fds|. Other than stdin, stdout, and // stderr, the status of fds not listed in either set is undefined. static bool StartHandshaker(ScopedProcess *out, ScopedFD *out_control, const TestConfig *config, bool is_resume, std::map map_fds, std::vector close_fds) { if (config->handshaker_path.empty()) { fprintf(stderr, "no -handshaker-path specified\n"); return false; } struct stat dummy; if (stat(config->handshaker_path.c_str(), &dummy) == -1) { perror(config->handshaker_path.c_str()); return false; } std::vector args; args.push_back(config->handshaker_path.c_str()); static const char kResumeFlag[] = "-handshaker-resume"; if (is_resume) { args.push_back(kResumeFlag); } // config->argv omits argv[0]. for (int j = 0; j < config->argc; ++j) { args.push_back(config->argv[j]); } args.push_back(nullptr); // A datagram socket guarantees that writes are all-or-nothing. int control[2]; if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) { perror("socketpair"); return false; } ScopedFD scoped_control0(control[0]), scoped_control1(control[1]); close_fds.push_back(control[0]); map_fds[kFdControl] = control[1]; posix_spawn_file_actions_t actions; if (posix_spawn_file_actions_init(&actions) != 0) { return false; } FileActionsDestroyer actions_destroyer(&actions); for (int fd : close_fds) { if (posix_spawn_file_actions_addclose(&actions, fd) != 0) { return false; } } if (!map_fds.empty()) { int max_fd = STDERR_FILENO; for (const auto &pair : map_fds) { max_fd = std::max(max_fd, pair.first); max_fd = std::max(max_fd, pair.second); } // |map_fds| may contain cycles, so make a copy of all the source fds. // |posix_spawn| can only use |dup2|, not |dup|, so we assume |max_fd| is // the last fd we care about inheriting. |temp_fds| maps from fd number in // the parent process to a temporary fd number in the child process. std::map temp_fds; int next_fd = max_fd + 1; for (const auto &pair : map_fds) { if (temp_fds.count(pair.second)) { continue; } temp_fds[pair.second] = next_fd; if (posix_spawn_file_actions_adddup2(&actions, pair.second, next_fd) != 0 || posix_spawn_file_actions_addclose(&actions, pair.second) != 0) { return false; } next_fd++; } for (const auto &pair : map_fds) { if (posix_spawn_file_actions_adddup2(&actions, temp_fds[pair.second], pair.first) != 0) { return false; } } // Clean up temporary fds. for (int fd = max_fd + 1; fd < next_fd; fd++) { if (posix_spawn_file_actions_addclose(&actions, fd) != 0) { return false; } } } fflush(stdout); fflush(stderr); // MSan doesn't know that |posix_spawn| initializes its output, so initialize // it to -1. pid_t pid = -1; if (posix_spawn(&pid, args[0], &actions, nullptr, const_cast(args.data()), environ) != 0) { return false; } out->Reset(pid); *out_control = std::move(scoped_control0); return true; } // RunHandshaker forks and execs the handshaker binary, handing off |input|, // and, after proxying some amount of handshake traffic, handing back |out|. static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume, Span input, std::vector *out) { int rfd[2], wfd[2]; // We use pipes, rather than some other mechanism, for their buffers. During // the handshake, this process acts as a dumb proxy until receiving the // handback signal, which arrives asynchronously. The race condition means // that this process could incorrectly proxy post-handshake data from the // client to the handshaker. // // To avoid this, this process never proxies data to the handshaker that the // handshaker has not explicitly requested as a result of hitting // |SSL_ERROR_WANT_READ|. Pipes allow the data to sit in a buffer while the // two processes synchronize over the |control| channel. if (pipe(rfd) != 0) { perror("pipe"); return false; } ScopedFD rfd0_closer(rfd[0]), rfd1_closer(rfd[1]); if (pipe(wfd) != 0) { perror("pipe"); return false; } ScopedFD wfd0_closer(wfd[0]), wfd1_closer(wfd[1]); ScopedProcess handshaker; ScopedFD control; if (!StartHandshaker( &handshaker, &control, config, is_resume, {{kFdProxyToHandshaker, rfd[0]}, {kFdHandshakerToProxy, wfd[1]}}, {rfd[1], wfd[0]})) { return false; } rfd0_closer.Reset(); wfd1_closer.Reset(); if (write_eintr(control.fd(), input.data(), input.size()) == -1) { perror("write"); return false; } bool ok = Proxy(bio, config->async, control.fd(), rfd[1], wfd[0]); int wstatus; if (!handshaker.Wait(&wstatus)) { perror("waitpid"); return false; } if (ok && wstatus) { fprintf(stderr, "handshaker exited irregularly\n"); return false; } if (!ok) { return false; // This is a "good", i.e. expected, error. } constexpr size_t kBufSize = 1024 * 1024; std::vector buf(kBufSize); ssize_t len = read_eintr(control.fd(), buf.data(), buf.size()); if (len == -1) { perror("read"); return false; } buf.resize(len); *out = std::move(buf); return true; } static bool RequestHandshakeHint(const TestConfig *config, bool is_resume, Span input, bool *out_has_hints, std::vector *out_hints) { ScopedProcess handshaker; ScopedFD control; if (!StartHandshaker(&handshaker, &control, config, is_resume, {}, {})) { return false; } if (write_eintr(control.fd(), input.data(), input.size()) == -1) { perror("write"); return false; } char msg; if (read_eintr(control.fd(), &msg, 1) != 1) { perror("read"); return false; } switch (msg) { case kControlMsgDone: { constexpr size_t kBufSize = 1024 * 1024; out_hints->resize(kBufSize); ssize_t len = read_eintr(control.fd(), out_hints->data(), out_hints->size()); if (len == -1) { perror("read"); return false; } out_hints->resize(len); *out_has_hints = true; break; } case kControlMsgError: *out_has_hints = false; break; default: fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); return false; } int wstatus; if (!handshaker.Wait(&wstatus)) { perror("waitpid"); return false; } if (wstatus) { fprintf(stderr, "handshaker exited irregularly\n"); return false; } return true; } // PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to // be passed to the handshaker. The serialized state includes both the SSL // handoff, as well test-related state. static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer, std::vector *out_handoff) { SSL_set_handoff_mode(ssl, 1); const TestConfig *config = GetTestConfig(ssl); int ret = -1; do { ret = CheckIdempotentError( "SSL_do_handshake", ssl, [&]() -> int { return SSL_do_handshake(ssl); }); } while (!HandoffReady(ssl, ret) && config->async && RetryAsync(ssl, ret)); if (!HandoffReady(ssl, ret)) { fprintf(stderr, "Handshake failed while waiting for handoff.\n"); return false; } ScopedCBB cbb; SSL_CLIENT_HELLO hello; if (!CBB_init(cbb.get(), 512) || !SSL_serialize_handoff(ssl, cbb.get(), &hello) || !writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) || !SerializeContextState(SSL_get_SSL_CTX(ssl), cbb.get()) || !GetTestState(ssl)->Serialize(cbb.get())) { fprintf(stderr, "Handoff serialisation failed.\n"); return false; } out_handoff->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); return true; } // DoSplitHandshake delegates the SSL handshake to a separate process, called // the handshaker. This process proxies I/O between the handshaker and the // client, using the |BIO| from |ssl|. After a successful handshake, |ssl| is // replaced with a new |SSL| object, in a way that is intended to be invisible // to the caller. bool DoSplitHandshake(UniquePtr *ssl, SettingsWriter *writer, bool is_resume) { assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get())); std::vector handshaker_input; const TestConfig *config = GetTestConfig(ssl->get()); // out is the response from the handshaker, which includes a serialized // handback message, but also serialized updates to the |TestState|. std::vector out; if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) || !RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume, handshaker_input, &out)) { fprintf(stderr, "Handoff failed.\n"); return false; } SSL_CTX *ctx = SSL_get_SSL_CTX(ssl->get()); UniquePtr ssl_handback = config->NewSSL(ctx, nullptr, nullptr); if (!ssl_handback) { return false; } CBS output, handback; CBS_init(&output, out.data(), out.size()); if (!CBS_get_u24_length_prefixed(&output, &handback) || !DeserializeContextState(&output, ctx) || !SetTestState(ssl_handback.get(), TestState::Deserialize(&output, ctx)) || !GetTestState(ssl_handback.get()) || !writer->WriteHandback(handback) || !SSL_apply_handback(ssl_handback.get(), handback)) { fprintf(stderr, "Handback failed.\n"); return false; } MoveBIOs(ssl_handback.get(), ssl->get()); GetTestState(ssl_handback.get())->async_bio = GetTestState(ssl->get())->async_bio; GetTestState(ssl->get())->async_bio = nullptr; *ssl = std::move(ssl_handback); return true; } bool GetHandshakeHint(SSL *ssl, SettingsWriter *writer, bool is_resume, const SSL_CLIENT_HELLO *client_hello) { ScopedCBB input; CBB child; if (!CBB_init(input.get(), client_hello->client_hello_len + 256) || !CBB_add_u24_length_prefixed(input.get(), &child) || !CBB_add_bytes(&child, client_hello->client_hello, client_hello->client_hello_len) || !CBB_add_u24_length_prefixed(input.get(), &child) || !SSL_serialize_capabilities(ssl, &child) || // !CBB_flush(input.get())) { return false; } bool has_hints; std::vector hints; if (!RequestHandshakeHint( GetTestConfig(ssl), is_resume, MakeConstSpan(CBB_data(input.get()), CBB_len(input.get())), &has_hints, &hints)) { return false; } if (has_hints && (!writer->WriteHints(hints) || !SSL_set_handshake_hints(ssl, hints.data(), hints.size()))) { return false; } return true; } #endif // defined(HANDSHAKER_SUPPORTED)