// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runner import ( "crypto" "crypto/aes" "crypto/cipher" "crypto/des" "crypto/hmac" "crypto/md5" "crypto/sha1" "crypto/sha256" "crypto/sha512" "crypto/x509" "hash" "golang.org/x/crypto/chacha20poly1305" ) // a keyAgreement implements the client and server side of a TLS key agreement // protocol by generating and processing key exchange messages. type keyAgreement interface { // On the server side, the first two methods are called in order. // In the case that the key agreement protocol doesn't use a // ServerKeyExchange message, generateServerKeyExchange can return nil, // nil. generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg, uint16) (*serverKeyExchangeMsg, error) processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error) // On the client side, the next two methods are called in order. // This method may not be called if the server doesn't send a // ServerKeyExchange message. processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, crypto.PublicKey, *serverKeyExchangeMsg) error generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) // peerSignatureAlgorithm returns the signature algorithm used by the // peer, or zero if not applicable. peerSignatureAlgorithm() signatureAlgorithm } const ( // suiteECDH indicates that the cipher suite involves elliptic curve // Diffie-Hellman. This means that it should only be selected when the // client indicates that it supports ECC with a curve and point format // that we're happy with. suiteECDHE = 1 << iota // suiteECDSA indicates that the cipher suite involves an ECDSA // signature and therefore may only be selected when the server's // certificate is ECDSA. If this is not set then the cipher suite is // RSA based. suiteECDSA // suiteTLS12 indicates that the cipher suite should only be advertised // and accepted when using TLS 1.2 or greater. suiteTLS12 // suiteTLS13 indicates that the cipher suite can be used with TLS 1.3. // Cipher suites lacking this flag may not be used with TLS 1.3. suiteTLS13 // suiteSHA384 indicates that the cipher suite uses SHA384 as the // handshake hash. suiteSHA384 // suitePSK indicates that the cipher suite authenticates with // a pre-shared key rather than a server private key. suitePSK ) type tlsAead struct { cipher.AEAD explicitNonce bool } // A cipherSuite is a specific combination of key agreement, cipher and MAC // function. All cipher suites currently assume RSA key agreement. type cipherSuite struct { id uint16 // the lengths, in bytes, of the key material needed for each component. keyLen int macLen int ivLen func(version uint16) int ka func(version uint16) keyAgreement // flags is a bitmask of the suite* values, above. flags int cipher func(key, iv []byte, isRead bool) interface{} mac func(version uint16, macKey []byte) macFunction aead func(version uint16, key, fixedNonce []byte) *tlsAead } func (cs cipherSuite) hash() crypto.Hash { if cs.flags&suiteSHA384 != 0 { return crypto.SHA384 } return crypto.SHA256 } var cipherSuites = []*cipherSuite{ {TLS_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, nil, suiteTLS13, nil, nil, aeadCHACHA20POLY1305}, {TLS_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, nil, suiteTLS13, nil, nil, aeadAESGCM}, {TLS_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, nil, suiteTLS13 | suiteSHA384, nil, nil, aeadAESGCM}, {TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, {TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM}, {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM}, {TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, {TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil}, {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, cipherAES, macSHA256, nil}, {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil}, {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil}, {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, {TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, rsaKA, suiteTLS12, nil, nil, aeadAESGCM}, {TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, {TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil}, {TLS_RSA_WITH_AES_256_CBC_SHA256, 32, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil}, {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil}, {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil}, {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil}, {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, rsaKA, 0, cipher3DES, macSHA1, nil}, {TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdhePSKKA, suiteECDHE | suitePSK | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, {TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil}, {TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil}, {TLS_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil}, {TLS_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil}, {TLS_RSA_WITH_NULL_SHA, 0, 20, noIV, rsaKA, 0, cipherNull, macSHA1, nil}, } func noIV(vers uint16) int { return 0 } func ivLenChaCha20Poly1305(vers uint16) int { return 12 } func ivLenAESGCM(vers uint16) int { if vers >= VersionTLS13 { return 12 } return 4 } func ivLenAES(vers uint16) int { return 16 } func ivLen3DES(vers uint16) int { return 8 } type nullCipher struct{} func cipherNull(key, iv []byte, isRead bool) interface{} { return nullCipher{} } func cipher3DES(key, iv []byte, isRead bool) interface{} { block, _ := des.NewTripleDESCipher(key) if isRead { return cipher.NewCBCDecrypter(block, iv) } return cipher.NewCBCEncrypter(block, iv) } func cipherAES(key, iv []byte, isRead bool) interface{} { block, _ := aes.NewCipher(key) if isRead { return cipher.NewCBCDecrypter(block, iv) } return cipher.NewCBCEncrypter(block, iv) } // macSHA1 returns a macFunction for the given protocol version. func macSHA1(version uint16, key []byte) macFunction { return tls10MAC{hmac.New(sha1.New, key)} } func macMD5(version uint16, key []byte) macFunction { return tls10MAC{hmac.New(md5.New, key)} } func macSHA256(version uint16, key []byte) macFunction { return tls10MAC{hmac.New(sha256.New, key)} } func macSHA384(version uint16, key []byte) macFunction { return tls10MAC{hmac.New(sha512.New384, key)} } type macFunction interface { Size() int MAC(digestBuf, seq, header, length, data []byte) []byte } // fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to // each call. type fixedNonceAEAD struct { // sealNonce and openNonce are buffers where the larger nonce will be // constructed. Since a seal and open operation may be running // concurrently, there is a separate buffer for each. sealNonce, openNonce []byte aead cipher.AEAD } func (f *fixedNonceAEAD) NonceSize() int { return 8 } func (f *fixedNonceAEAD) Overhead() int { return f.aead.Overhead() } func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { copy(f.sealNonce[len(f.sealNonce)-8:], nonce) return f.aead.Seal(out, f.sealNonce, plaintext, additionalData) } func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { copy(f.openNonce[len(f.openNonce)-8:], nonce) return f.aead.Open(out, f.openNonce, plaintext, additionalData) } func aeadAESGCM(version uint16, key, fixedNonce []byte) *tlsAead { aes, err := aes.NewCipher(key) if err != nil { panic(err) } aead, err := cipher.NewGCM(aes) if err != nil { panic(err) } nonce1, nonce2 := make([]byte, 12), make([]byte, 12) copy(nonce1, fixedNonce) copy(nonce2, fixedNonce) if version >= VersionTLS13 { return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false} } return &tlsAead{&fixedNonceAEAD{nonce1, nonce2, aead}, true} } func xorSlice(out, in []byte) { for i := range out { out[i] ^= in[i] } } // xorNonceAEAD wraps an AEAD and XORs a fixed portion of the nonce, left-padded // if necessary, each call. type xorNonceAEAD struct { // sealNonce and openNonce are buffers where the larger nonce will be // constructed. Since a seal and open operation may be running // concurrently, there is a separate buffer for each. sealNonce, openNonce []byte aead cipher.AEAD } func (x *xorNonceAEAD) NonceSize() int { return 8 } func (x *xorNonceAEAD) Overhead() int { return x.aead.Overhead() } func (x *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce) ret := x.aead.Seal(out, x.sealNonce, plaintext, additionalData) xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce) return ret } func (x *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce) ret, err := x.aead.Open(out, x.openNonce, plaintext, additionalData) xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce) return ret, err } func aeadCHACHA20POLY1305(version uint16, key, fixedNonce []byte) *tlsAead { aead, err := chacha20poly1305.New(key) if err != nil { panic(err) } nonce1, nonce2 := make([]byte, len(fixedNonce)), make([]byte, len(fixedNonce)) copy(nonce1, fixedNonce) copy(nonce2, fixedNonce) return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false} } // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3. type tls10MAC struct { h hash.Hash } func (s tls10MAC) Size() int { return s.h.Size() } func (s tls10MAC) MAC(digestBuf, seq, header, length, data []byte) []byte { s.h.Reset() s.h.Write(seq) s.h.Write(header) s.h.Write(length) s.h.Write(data) return s.h.Sum(digestBuf[:0]) } func rsaKA(version uint16) keyAgreement { return &rsaKeyAgreement{version: version} } func ecdheECDSAKA(version uint16) keyAgreement { return &ecdheKeyAgreement{ auth: &signedKeyAgreement{ keyType: keyTypeECDSA, version: version, }, } } func ecdheRSAKA(version uint16) keyAgreement { return &ecdheKeyAgreement{ auth: &signedKeyAgreement{ keyType: keyTypeRSA, version: version, }, } } func pskKA(version uint16) keyAgreement { return &pskKeyAgreement{ base: &nilKeyAgreement{}, } } func ecdhePSKKA(version uint16) keyAgreement { return &pskKeyAgreement{ base: &ecdheKeyAgreement{ auth: &nilKeyAgreementAuthentication{}, }, } } // mutualCipherSuite returns a cipherSuite given a list of supported // ciphersuites and the id requested by the peer. func mutualCipherSuite(have []uint16, want uint16) *cipherSuite { for _, id := range have { if id == want { return cipherSuiteFromID(id) } } return nil } func cipherSuiteFromID(id uint16) *cipherSuite { for _, suite := range cipherSuites { if suite.id == id { return suite } } return nil } // A list of the possible cipher suite ids. Taken from // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml const ( TLS_RSA_WITH_NULL_SHA uint16 = 0x0002 TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035 TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c TLS_RSA_WITH_AES_256_CBC_SHA256 uint16 = 0x003d TLS_PSK_WITH_AES_128_CBC_SHA uint16 = 0x008c TLS_PSK_WITH_AES_256_CBC_SHA uint16 = 0x008d TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 uint16 = 0xc024 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 uint16 = 0xc028 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA uint16 = 0xc035 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA uint16 = 0xc036 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca8 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9 TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xccac renegotiationSCSV uint16 = 0x00ff fallbackSCSV uint16 = 0x5600 ) // Additional cipher suite IDs, not IANA-assigned. const ( TLS_AES_128_GCM_SHA256 uint16 = 0x1301 TLS_AES_256_GCM_SHA384 uint16 = 0x1302 TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303 )