/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "test_config.h" #include #include #include #include #include #include #include #include #include "../../crypto/internal.h" #include "../internal.h" #include "handshake_util.h" #include "mock_quic_transport.h" #include "test_state.h" namespace { template struct Flag { const char *flag; T TestConfig::*member; }; // FindField looks for the flag in |flags| that matches |flag|. If one is found, // it returns a pointer to the corresponding field in |config|. Otherwise, it // returns NULL. template T *FindField(TestConfig *config, const Flag (&flags)[N], const char *flag) { for (size_t i = 0; i < N; i++) { if (strcmp(flag, flags[i].flag) == 0) { return &(config->*(flags[i].member)); } } return NULL; } const Flag kBoolFlags[] = { {"-server", &TestConfig::is_server}, {"-dtls", &TestConfig::is_dtls}, {"-quic", &TestConfig::is_quic}, {"-fallback-scsv", &TestConfig::fallback_scsv}, {"-enable-ech-grease", &TestConfig::enable_ech_grease}, {"-require-any-client-certificate", &TestConfig::require_any_client_certificate}, {"-false-start", &TestConfig::false_start}, {"-async", &TestConfig::async}, {"-write-different-record-sizes", &TestConfig::write_different_record_sizes}, {"-cbc-record-splitting", &TestConfig::cbc_record_splitting}, {"-partial-write", &TestConfig::partial_write}, {"-no-tls13", &TestConfig::no_tls13}, {"-no-tls12", &TestConfig::no_tls12}, {"-no-tls11", &TestConfig::no_tls11}, {"-no-tls1", &TestConfig::no_tls1}, {"-no-ticket", &TestConfig::no_ticket}, {"-enable-channel-id", &TestConfig::enable_channel_id}, {"-shim-writes-first", &TestConfig::shim_writes_first}, {"-expect-session-miss", &TestConfig::expect_session_miss}, {"-decline-alpn", &TestConfig::decline_alpn}, {"-reject-alpn", &TestConfig::reject_alpn}, {"-select-empty-alpn", &TestConfig::select_empty_alpn}, {"-defer-alps", &TestConfig::defer_alps}, {"-expect-extended-master-secret", &TestConfig::expect_extended_master_secret}, {"-enable-ocsp-stapling", &TestConfig::enable_ocsp_stapling}, {"-enable-signed-cert-timestamps", &TestConfig::enable_signed_cert_timestamps}, {"-implicit-handshake", &TestConfig::implicit_handshake}, {"-use-early-callback", &TestConfig::use_early_callback}, {"-fail-early-callback", &TestConfig::fail_early_callback}, {"-install-ddos-callback", &TestConfig::install_ddos_callback}, {"-fail-ddos-callback", &TestConfig::fail_ddos_callback}, {"-fail-cert-callback", &TestConfig::fail_cert_callback}, {"-handshake-never-done", &TestConfig::handshake_never_done}, {"-use-export-context", &TestConfig::use_export_context}, {"-tls-unique", &TestConfig::tls_unique}, {"-expect-ticket-renewal", &TestConfig::expect_ticket_renewal}, {"-expect-no-session", &TestConfig::expect_no_session}, {"-expect-ticket-supports-early-data", &TestConfig::expect_ticket_supports_early_data}, {"-use-ticket-callback", &TestConfig::use_ticket_callback}, {"-renew-ticket", &TestConfig::renew_ticket}, {"-enable-early-data", &TestConfig::enable_early_data}, {"-check-close-notify", &TestConfig::check_close_notify}, {"-shim-shuts-down", &TestConfig::shim_shuts_down}, {"-verify-fail", &TestConfig::verify_fail}, {"-verify-peer", &TestConfig::verify_peer}, {"-verify-peer-if-no-obc", &TestConfig::verify_peer_if_no_obc}, {"-expect-verify-result", &TestConfig::expect_verify_result}, {"-renegotiate-once", &TestConfig::renegotiate_once}, {"-renegotiate-freely", &TestConfig::renegotiate_freely}, {"-renegotiate-ignore", &TestConfig::renegotiate_ignore}, {"-renegotiate-explicit", &TestConfig::renegotiate_explicit}, {"-forbid-renegotiation-after-handshake", &TestConfig::forbid_renegotiation_after_handshake}, {"-use-old-client-cert-callback", &TestConfig::use_old_client_cert_callback}, {"-send-alert", &TestConfig::send_alert}, {"-peek-then-read", &TestConfig::peek_then_read}, {"-enable-grease", &TestConfig::enable_grease}, {"-use-exporter-between-reads", &TestConfig::use_exporter_between_reads}, {"-retain-only-sha256-client-cert", &TestConfig::retain_only_sha256_client_cert}, {"-expect-sha256-client-cert", &TestConfig::expect_sha256_client_cert}, {"-read-with-unfinished-write", &TestConfig::read_with_unfinished_write}, {"-expect-secure-renegotiation", &TestConfig::expect_secure_renegotiation}, {"-expect-no-secure-renegotiation", &TestConfig::expect_no_secure_renegotiation}, {"-expect-session-id", &TestConfig::expect_session_id}, {"-expect-no-session-id", &TestConfig::expect_no_session_id}, {"-expect-accept-early-data", &TestConfig::expect_accept_early_data}, {"-expect-reject-early-data", &TestConfig::expect_reject_early_data}, {"-expect-no-offer-early-data", &TestConfig::expect_no_offer_early_data}, {"-no-op-extra-handshake", &TestConfig::no_op_extra_handshake}, {"-handshake-twice", &TestConfig::handshake_twice}, {"-allow-unknown-alpn-protos", &TestConfig::allow_unknown_alpn_protos}, {"-use-custom-verify-callback", &TestConfig::use_custom_verify_callback}, {"-allow-false-start-without-alpn", &TestConfig::allow_false_start_without_alpn}, {"-handoff", &TestConfig::handoff}, {"-handshake-hints", &TestConfig::handshake_hints}, {"-allow-hint-mismatch", &TestConfig::allow_hint_mismatch}, {"-use-ocsp-callback", &TestConfig::use_ocsp_callback}, {"-set-ocsp-in-callback", &TestConfig::set_ocsp_in_callback}, {"-decline-ocsp-callback", &TestConfig::decline_ocsp_callback}, {"-fail-ocsp-callback", &TestConfig::fail_ocsp_callback}, {"-install-cert-compression-algs", &TestConfig::install_cert_compression_algs}, {"-is-handshaker-supported", &TestConfig::is_handshaker_supported}, {"-handshaker-resume", &TestConfig::handshaker_resume}, {"-reverify-on-resume", &TestConfig::reverify_on_resume}, {"-enforce-rsa-key-usage", &TestConfig::enforce_rsa_key_usage}, {"-jdk11-workaround", &TestConfig::jdk11_workaround}, {"-server-preference", &TestConfig::server_preference}, {"-export-traffic-secrets", &TestConfig::export_traffic_secrets}, {"-key-update", &TestConfig::key_update}, {"-expect-delegated-credential-used", &TestConfig::expect_delegated_credential_used}, {"-expect-hrr", &TestConfig::expect_hrr}, {"-expect-no-hrr", &TestConfig::expect_no_hrr}, {"-wait-for-debugger", &TestConfig::wait_for_debugger}, }; const Flag kStringFlags[] = { {"-write-settings", &TestConfig::write_settings}, {"-key-file", &TestConfig::key_file}, {"-cert-file", &TestConfig::cert_file}, {"-expect-server-name", &TestConfig::expect_server_name}, {"-advertise-npn", &TestConfig::advertise_npn}, {"-expect-next-proto", &TestConfig::expect_next_proto}, {"-select-next-proto", &TestConfig::select_next_proto}, {"-send-channel-id", &TestConfig::send_channel_id}, {"-host-name", &TestConfig::host_name}, {"-advertise-alpn", &TestConfig::advertise_alpn}, {"-expect-alpn", &TestConfig::expect_alpn}, {"-expect-late-alpn", &TestConfig::expect_late_alpn}, {"-expect-advertised-alpn", &TestConfig::expect_advertised_alpn}, {"-select-alpn", &TestConfig::select_alpn}, {"-psk", &TestConfig::psk}, {"-psk-identity", &TestConfig::psk_identity}, {"-srtp-profiles", &TestConfig::srtp_profiles}, {"-cipher", &TestConfig::cipher}, {"-export-label", &TestConfig::export_label}, {"-export-context", &TestConfig::export_context}, {"-expect-peer-cert-file", &TestConfig::expect_peer_cert_file}, {"-use-client-ca-list", &TestConfig::use_client_ca_list}, {"-expect-client-ca-list", &TestConfig::expect_client_ca_list}, {"-expect-msg-callback", &TestConfig::expect_msg_callback}, {"-handshaker-path", &TestConfig::handshaker_path}, {"-delegated-credential", &TestConfig::delegated_credential}, {"-expect-early-data-reason", &TestConfig::expect_early_data_reason}, {"-quic-early-data-context", &TestConfig::quic_early_data_context}, }; // TODO(davidben): When we can depend on C++17 or Abseil, switch this to // std::optional or absl::optional. const Flag> kOptionalStringFlags[] = { {"-expect-peer-application-settings", &TestConfig::expect_peer_application_settings}, }; const Flag kBase64Flags[] = { {"-expect-certificate-types", &TestConfig::expect_certificate_types}, {"-expect-channel-id", &TestConfig::expect_channel_id}, {"-token-binding-params", &TestConfig::send_token_binding_params}, {"-expect-ocsp-response", &TestConfig::expect_ocsp_response}, {"-expect-signed-cert-timestamps", &TestConfig::expect_signed_cert_timestamps}, {"-ocsp-response", &TestConfig::ocsp_response}, {"-signed-cert-timestamps", &TestConfig::signed_cert_timestamps}, {"-ticket-key", &TestConfig::ticket_key}, {"-quic-transport-params", &TestConfig::quic_transport_params}, {"-expect-quic-transport-params", &TestConfig::expect_quic_transport_params}, }; const Flag kIntFlags[] = { {"-port", &TestConfig::port}, {"-resume-count", &TestConfig::resume_count}, {"-expect-token-binding-param", &TestConfig::expect_token_binding_param}, {"-min-version", &TestConfig::min_version}, {"-max-version", &TestConfig::max_version}, {"-expect-version", &TestConfig::expect_version}, {"-mtu", &TestConfig::mtu}, {"-export-keying-material", &TestConfig::export_keying_material}, {"-expect-total-renegotiations", &TestConfig::expect_total_renegotiations}, {"-expect-peer-signature-algorithm", &TestConfig::expect_peer_signature_algorithm}, {"-expect-curve-id", &TestConfig::expect_curve_id}, {"-initial-timeout-duration-ms", &TestConfig::initial_timeout_duration_ms}, {"-max-cert-list", &TestConfig::max_cert_list}, {"-expect-cipher-aes", &TestConfig::expect_cipher_aes}, {"-expect-cipher-no-aes", &TestConfig::expect_cipher_no_aes}, {"-expect-cipher", &TestConfig::expect_cipher}, {"-resumption-delay", &TestConfig::resumption_delay}, {"-max-send-fragment", &TestConfig::max_send_fragment}, {"-read-size", &TestConfig::read_size}, {"-expect-ticket-age-skew", &TestConfig::expect_ticket_age_skew}, {"-quic-use-legacy-codepoint", &TestConfig::quic_use_legacy_codepoint}, }; const Flag> kIntVectorFlags[] = { {"-signing-prefs", &TestConfig::signing_prefs}, {"-verify-prefs", &TestConfig::verify_prefs}, {"-expect-peer-verify-pref", &TestConfig::expect_peer_verify_prefs}, {"-curves", &TestConfig::curves}, {"-ech-is-retry-config", &TestConfig::ech_is_retry_config}, }; const Flag> kBase64VectorFlags[] = { {"-ech-server-config", &TestConfig::ech_server_configs}, {"-ech-server-key", &TestConfig::ech_server_keys}, }; const Flag>> kStringPairVectorFlags[] = { {"-application-settings", &TestConfig::application_settings}, }; bool DecodeBase64(std::string *out, const std::string &in) { size_t len; if (!EVP_DecodedLength(&len, in.size())) { fprintf(stderr, "Invalid base64: %s.\n", in.c_str()); return false; } std::vector buf(len); if (!EVP_DecodeBase64(buf.data(), &len, buf.size(), reinterpret_cast(in.data()), in.size())) { fprintf(stderr, "Invalid base64: %s.\n", in.c_str()); return false; } out->assign(reinterpret_cast(buf.data()), len); return true; } bool ParseFlag(const char *flag, int argc, char **argv, int *i, bool skip, TestConfig *out_config) { bool *bool_field = FindField(out_config, kBoolFlags, flag); if (bool_field != NULL) { if (!skip) { *bool_field = true; } return true; } std::string *string_field = FindField(out_config, kStringFlags, flag); if (string_field != NULL) { *i = *i + 1; if (*i >= argc) { fprintf(stderr, "Missing parameter.\n"); return false; } if (!skip) { string_field->assign(argv[*i]); } return true; } std::unique_ptr *optional_string_field = FindField(out_config, kOptionalStringFlags, flag); if (optional_string_field != NULL) { *i = *i + 1; if (*i >= argc) { fprintf(stderr, "Missing parameter.\n"); return false; } if (!skip) { optional_string_field->reset(new std::string(argv[*i])); } return true; } std::string *base64_field = FindField(out_config, kBase64Flags, flag); if (base64_field != NULL) { *i = *i + 1; if (*i >= argc) { fprintf(stderr, "Missing parameter.\n"); return false; } std::string value; if (!DecodeBase64(&value, argv[*i])) { return false; } if (!skip) { *base64_field = std::move(value); } return true; } int *int_field = FindField(out_config, kIntFlags, flag); if (int_field) { *i = *i + 1; if (*i >= argc) { fprintf(stderr, "Missing parameter.\n"); return false; } if (!skip) { *int_field = atoi(argv[*i]); } return true; } std::vector *int_vector_field = FindField(out_config, kIntVectorFlags, flag); if (int_vector_field) { *i = *i + 1; if (*i >= argc) { fprintf(stderr, "Missing parameter.\n"); return false; } // Each instance of the flag adds to the list. if (!skip) { int_vector_field->push_back(atoi(argv[*i])); } return true; } std::vector *base64_vector_field = FindField(out_config, kBase64VectorFlags, flag); if (base64_vector_field) { *i = *i + 1; if (*i >= argc) { fprintf(stderr, "Missing parameter.\n"); return false; } std::string value; if (!DecodeBase64(&value, argv[*i])) { return false; } // Each instance of the flag adds to the list. if (!skip) { base64_vector_field->push_back(std::move(value)); } return true; } std::vector> *string_pair_vector_field = FindField(out_config, kStringPairVectorFlags, flag); if (string_pair_vector_field) { *i = *i + 1; if (*i >= argc) { fprintf(stderr, "Missing parameter.\n"); return false; } const char *comma = strchr(argv[*i], ','); if (!comma) { fprintf( stderr, "Parameter should be a comma-separated triple composed of two base64 " "strings followed by \"true\" or \"false\".\n"); return false; } // Each instance of the flag adds to the list. if (!skip) { string_pair_vector_field->push_back(std::make_pair( std::string(argv[*i], comma - argv[*i]), std::string(comma + 1))); } return true; } fprintf(stderr, "Unknown argument: %s.\n", flag); return false; } // RemovePrefix checks if |*str| begins with |prefix| + "-". If so, it advances // |*str| past |prefix| (but not past the "-") and returns true. Otherwise, it // returns false and leaves |*str| unmodified. bool RemovePrefix(const char **str, const char *prefix) { size_t prefix_len = strlen(prefix); if (strncmp(*str, prefix, strlen(prefix)) == 0 && (*str)[prefix_len] == '-') { *str += strlen(prefix); return true; } return false; } } // namespace bool ParseConfig(int argc, char **argv, bool is_shim, TestConfig *out_initial, TestConfig *out_resume, TestConfig *out_retry) { out_initial->argc = out_resume->argc = out_retry->argc = argc; out_initial->argv = out_resume->argv = out_retry->argv = argv; for (int i = 0; i < argc; i++) { bool skip = false; const char *flag = argv[i]; // -on-shim and -on-handshaker prefixes enable flags only on the shim or // handshaker. if (RemovePrefix(&flag, "-on-shim")) { if (!is_shim) { skip = true; } } else if (RemovePrefix(&flag, "-on-handshaker")) { if (is_shim) { skip = true; } } // The following prefixes allow different configurations for each of the // initial, resumption, and 0-RTT retry handshakes. if (RemovePrefix(&flag, "-on-initial")) { if (!ParseFlag(flag, argc, argv, &i, skip, out_initial)) { return false; } } else if (RemovePrefix(&flag, "-on-resume")) { if (!ParseFlag(flag, argc, argv, &i, skip, out_resume)) { return false; } } else if (RemovePrefix(&flag, "-on-retry")) { if (!ParseFlag(flag, argc, argv, &i, skip, out_retry)) { return false; } } else { // Unprefixed flags apply to all three. int i_init = i; int i_resume = i; if (!ParseFlag(flag, argc, argv, &i_init, skip, out_initial) || !ParseFlag(flag, argc, argv, &i_resume, skip, out_resume) || !ParseFlag(flag, argc, argv, &i, skip, out_retry)) { return false; } } } return true; } static CRYPTO_once_t once = CRYPTO_ONCE_INIT; static int g_config_index = 0; static CRYPTO_BUFFER_POOL *g_pool = nullptr; static void init_once() { g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); if (g_config_index < 0) { abort(); } g_pool = CRYPTO_BUFFER_POOL_new(); if (!g_pool) { abort(); } } bool SetTestConfig(SSL *ssl, const TestConfig *config) { CRYPTO_once(&once, init_once); return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1; } const TestConfig *GetTestConfig(const SSL *ssl) { CRYPTO_once(&once, init_once); return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index); } static int LegacyOCSPCallback(SSL *ssl, void *arg) { const TestConfig *config = GetTestConfig(ssl); if (!SSL_is_server(ssl)) { return !config->fail_ocsp_callback; } if (!config->ocsp_response.empty() && config->set_ocsp_in_callback && !SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(), config->ocsp_response.size())) { return SSL_TLSEXT_ERR_ALERT_FATAL; } if (config->fail_ocsp_callback) { return SSL_TLSEXT_ERR_ALERT_FATAL; } if (config->decline_ocsp_callback) { return SSL_TLSEXT_ERR_NOACK; } return SSL_TLSEXT_ERR_OK; } static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) { // SNI must be accessible from the SNI callback. const TestConfig *config = GetTestConfig(ssl); const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (server_name == nullptr || std::string(server_name) != config->expect_server_name) { fprintf(stderr, "servername mismatch (got %s; want %s).\n", server_name, config->expect_server_name.c_str()); return SSL_TLSEXT_ERR_ALERT_FATAL; } return SSL_TLSEXT_ERR_OK; } static int NextProtoSelectCallback(SSL *ssl, uint8_t **out, uint8_t *outlen, const uint8_t *in, unsigned inlen, void *arg) { const TestConfig *config = GetTestConfig(ssl); if (config->select_next_proto.empty()) { return SSL_TLSEXT_ERR_NOACK; } *out = (uint8_t *)config->select_next_proto.data(); *outlen = config->select_next_proto.size(); return SSL_TLSEXT_ERR_OK; } static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out, unsigned int *out_len, void *arg) { const TestConfig *config = GetTestConfig(ssl); if (config->advertise_npn.empty()) { return SSL_TLSEXT_ERR_NOACK; } *out = (const uint8_t *)config->advertise_npn.data(); *out_len = config->advertise_npn.size(); return SSL_TLSEXT_ERR_OK; } static void MessageCallback(int is_write, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) { const uint8_t *buf_u8 = reinterpret_cast(buf); const TestConfig *config = GetTestConfig(ssl); TestState *state = GetTestState(ssl); if (!state->msg_callback_ok) { return; } if (content_type == SSL3_RT_HEADER) { if (len != (config->is_dtls ? DTLS1_RT_HEADER_LENGTH : SSL3_RT_HEADER_LENGTH)) { fprintf(stderr, "Incorrect length for record header: %zu.\n", len); state->msg_callback_ok = false; } return; } state->msg_callback_text += is_write ? "write " : "read "; switch (content_type) { case 0: if (version != SSL2_VERSION) { fprintf(stderr, "Incorrect version for V2ClientHello: %x.\n", version); state->msg_callback_ok = false; return; } state->msg_callback_text += "v2clienthello\n"; return; case SSL3_RT_HANDSHAKE: { CBS cbs; CBS_init(&cbs, buf_u8, len); uint8_t type; uint32_t msg_len; if (!CBS_get_u8(&cbs, &type) || // TODO(davidben): Reporting on entire messages would be more // consistent than fragments. (config->is_dtls && !CBS_skip(&cbs, 3 /* total */ + 2 /* seq */ + 3 /* frag_off */)) || !CBS_get_u24(&cbs, &msg_len) || !CBS_skip(&cbs, msg_len) || CBS_len(&cbs) != 0) { fprintf(stderr, "Could not parse handshake message.\n"); state->msg_callback_ok = false; return; } char text[16]; snprintf(text, sizeof(text), "hs %d\n", type); state->msg_callback_text += text; return; } case SSL3_RT_CHANGE_CIPHER_SPEC: if (len != 1 || buf_u8[0] != 1) { fprintf(stderr, "Invalid ChangeCipherSpec.\n"); state->msg_callback_ok = false; return; } state->msg_callback_text += "ccs\n"; return; case SSL3_RT_ALERT: if (len != 2) { fprintf(stderr, "Invalid alert.\n"); state->msg_callback_ok = false; return; } char text[16]; snprintf(text, sizeof(text), "alert %d %d\n", buf_u8[0], buf_u8[1]); state->msg_callback_text += text; return; default: fprintf(stderr, "Invalid content_type: %d.\n", content_type); state->msg_callback_ok = false; } } static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt) { if (!encrypt) { if (GetTestState(ssl)->ticket_decrypt_done) { fprintf(stderr, "TicketKeyCallback called after completion.\n"); return -1; } GetTestState(ssl)->ticket_decrypt_done = true; } // This is just test code, so use the all-zeros key. static const uint8_t kZeros[16] = {0}; if (encrypt) { OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros)); RAND_bytes(iv, 16); } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) { return 0; } if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { return -1; } if (!encrypt) { return GetTestConfig(ssl)->renew_ticket ? 2 : 1; } return 1; } static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) { // This callback is called as the handshake completes. |SSL_get_session| // must continue to work and, historically, |SSL_in_init| returned false at // this point. if (SSL_in_init(ssl) || SSL_get_session(ssl) == nullptr) { fprintf(stderr, "Invalid state for NewSessionCallback.\n"); abort(); } GetTestState(ssl)->got_new_session = true; GetTestState(ssl)->new_session.reset(session); return 1; } static void InfoCallback(const SSL *ssl, int type, int val) { if (type == SSL_CB_HANDSHAKE_DONE) { if (GetTestConfig(ssl)->handshake_never_done) { fprintf(stderr, "Handshake unexpectedly completed.\n"); // Abort before any expected error code is printed, to ensure the overall // test fails. abort(); } // This callback is called when the handshake completes. |SSL_get_session| // must continue to work and |SSL_in_init| must return false. if (SSL_in_init(ssl) || SSL_get_session(ssl) == nullptr) { fprintf(stderr, "Invalid state for SSL_CB_HANDSHAKE_DONE.\n"); abort(); } GetTestState(ssl)->handshake_done = true; } } static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) { *out_pkey = GetTestState(ssl)->channel_id.release(); } static SSL_SESSION *GetSessionCallback(SSL *ssl, const uint8_t *data, int len, int *copy) { TestState *async_state = GetTestState(ssl); if (async_state->session) { *copy = 0; return async_state->session.release(); } else if (async_state->pending_session) { return SSL_magic_pending_session_ptr(); } else { return NULL; } } static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { *out_clock = *GetClock(); } static int AlpnSelectCallback(SSL *ssl, const uint8_t **out, uint8_t *outlen, const uint8_t *in, unsigned inlen, void *arg) { if (GetTestState(ssl)->alpn_select_done) { fprintf(stderr, "AlpnSelectCallback called after completion.\n"); exit(1); } GetTestState(ssl)->alpn_select_done = true; const TestConfig *config = GetTestConfig(ssl); if (config->decline_alpn) { return SSL_TLSEXT_ERR_NOACK; } if (config->reject_alpn) { return SSL_TLSEXT_ERR_ALERT_FATAL; } if (!config->expect_advertised_alpn.empty() && (config->expect_advertised_alpn.size() != inlen || OPENSSL_memcmp(config->expect_advertised_alpn.data(), in, inlen) != 0)) { fprintf(stderr, "bad ALPN select callback inputs.\n"); exit(1); } if (config->defer_alps) { for (const auto &pair : config->application_settings) { if (!SSL_add_application_settings( ssl, reinterpret_cast(pair.first.data()), pair.first.size(), reinterpret_cast(pair.second.data()), pair.second.size())) { fprintf(stderr, "error configuring ALPS.\n"); exit(1); } } } assert(config->select_alpn.empty() || !config->select_empty_alpn); *out = (const uint8_t *)config->select_alpn.data(); *outlen = config->select_alpn.size(); return SSL_TLSEXT_ERR_OK; } static bool CheckVerifyCallback(SSL *ssl) { const TestConfig *config = GetTestConfig(ssl); if (!config->expect_ocsp_response.empty()) { const uint8_t *data; size_t len; SSL_get0_ocsp_response(ssl, &data, &len); if (len == 0) { fprintf(stderr, "OCSP response not available in verify callback.\n"); return false; } } if (GetTestState(ssl)->cert_verified) { fprintf(stderr, "Certificate verified twice.\n"); return false; } return true; } static int CertVerifyCallback(X509_STORE_CTX *store_ctx, void *arg) { SSL *ssl = (SSL *)X509_STORE_CTX_get_ex_data( store_ctx, SSL_get_ex_data_X509_STORE_CTX_idx()); const TestConfig *config = GetTestConfig(ssl); if (!CheckVerifyCallback(ssl)) { return 0; } GetTestState(ssl)->cert_verified = true; if (config->verify_fail) { store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION; return 0; } return 1; } bool LoadCertificate(bssl::UniquePtr *out_x509, bssl::UniquePtr *out_chain, const std::string &file) { bssl::UniquePtr bio(BIO_new(BIO_s_file())); if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { return false; } out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); if (!*out_x509) { return false; } out_chain->reset(sk_X509_new_null()); if (!*out_chain) { return false; } // Keep reading the certificate chain. for (;;) { bssl::UniquePtr cert( PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); if (!cert) { break; } if (!bssl::PushToStack(out_chain->get(), std::move(cert))) { return false; } } uint32_t err = ERR_peek_last_error(); if (ERR_GET_LIB(err) != ERR_LIB_PEM || ERR_GET_REASON(err) != PEM_R_NO_START_LINE) { return false; } ERR_clear_error(); return true; } bssl::UniquePtr LoadPrivateKey(const std::string &file) { bssl::UniquePtr bio(BIO_new(BIO_s_file())); if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { return nullptr; } return bssl::UniquePtr( PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL)); } static bool GetCertificate(SSL *ssl, bssl::UniquePtr *out_x509, bssl::UniquePtr *out_chain, bssl::UniquePtr *out_pkey) { const TestConfig *config = GetTestConfig(ssl); if (!config->signing_prefs.empty()) { std::vector u16s(config->signing_prefs.begin(), config->signing_prefs.end()); if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) { return false; } } if (!config->key_file.empty()) { *out_pkey = LoadPrivateKey(config->key_file.c_str()); if (!*out_pkey) { return false; } } if (!config->cert_file.empty() && !LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) { return false; } if (!config->ocsp_response.empty() && !config->set_ocsp_in_callback && !SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(), config->ocsp_response.size())) { return false; } return true; } static bool FromHexDigit(uint8_t *out, char c) { if ('0' <= c && c <= '9') { *out = c - '0'; return true; } if ('a' <= c && c <= 'f') { *out = c - 'a' + 10; return true; } if ('A' <= c && c <= 'F') { *out = c - 'A' + 10; return true; } return false; } static bool HexDecode(std::string *out, const std::string &in) { if ((in.size() & 1) != 0) { return false; } std::unique_ptr buf(new uint8_t[in.size() / 2]); for (size_t i = 0; i < in.size() / 2; i++) { uint8_t high, low; if (!FromHexDigit(&high, in[i * 2]) || !FromHexDigit(&low, in[i * 2 + 1])) { return false; } buf[i] = (high << 4) | low; } out->assign(reinterpret_cast(buf.get()), in.size() / 2); return true; } static std::vector SplitParts(const std::string &in, const char delim) { std::vector ret; size_t start = 0; for (size_t i = 0; i < in.size(); i++) { if (in[i] == delim) { ret.push_back(in.substr(start, i - start)); start = i + 1; } } ret.push_back(in.substr(start, std::string::npos)); return ret; } static std::vector DecodeHexStrings( const std::string &hex_strings) { std::vector ret; const std::vector parts = SplitParts(hex_strings, ','); for (const auto &part : parts) { std::string binary; if (!HexDecode(&binary, part)) { fprintf(stderr, "Bad hex string: %s.\n", part.c_str()); return ret; } ret.push_back(binary); } return ret; } static bssl::UniquePtr DecodeHexX509Names( const std::string &hex_names) { const std::vector der_names = DecodeHexStrings(hex_names); bssl::UniquePtr ret(sk_X509_NAME_new_null()); if (!ret) { return nullptr; } for (const auto &der_name : der_names) { const uint8_t *const data = reinterpret_cast(der_name.data()); const uint8_t *derp = data; bssl::UniquePtr name( d2i_X509_NAME(nullptr, &derp, der_name.size())); if (!name || derp != data + der_name.size()) { fprintf(stderr, "Failed to parse X509_NAME.\n"); return nullptr; } if (!bssl::PushToStack(ret.get(), std::move(name))) { return nullptr; } } return ret; } static bool CheckPeerVerifyPrefs(SSL *ssl) { const TestConfig *config = GetTestConfig(ssl); if (!config->expect_peer_verify_prefs.empty()) { const uint16_t *peer_sigalgs; size_t num_peer_sigalgs = SSL_get0_peer_verify_algorithms(ssl, &peer_sigalgs); if (config->expect_peer_verify_prefs.size() != num_peer_sigalgs) { fprintf(stderr, "peer verify preferences length mismatch (got %zu, wanted %zu)\n", num_peer_sigalgs, config->expect_peer_verify_prefs.size()); return false; } for (size_t i = 0; i < num_peer_sigalgs; i++) { if (static_cast(peer_sigalgs[i]) != config->expect_peer_verify_prefs[i]) { fprintf(stderr, "peer verify preference %zu mismatch (got %04x, wanted %04x\n", i, peer_sigalgs[i], config->expect_peer_verify_prefs[i]); return false; } } } return true; } static bool CheckCertificateRequest(SSL *ssl) { const TestConfig *config = GetTestConfig(ssl); if (!CheckPeerVerifyPrefs(ssl)) { return false; } if (!config->expect_certificate_types.empty()) { const uint8_t *certificate_types; size_t certificate_types_len = SSL_get0_certificate_types(ssl, &certificate_types); if (certificate_types_len != config->expect_certificate_types.size() || OPENSSL_memcmp(certificate_types, config->expect_certificate_types.data(), certificate_types_len) != 0) { fprintf(stderr, "certificate types mismatch.\n"); return false; } } if (!config->expect_client_ca_list.empty()) { bssl::UniquePtr expected = DecodeHexX509Names(config->expect_client_ca_list); const size_t num_expected = sk_X509_NAME_num(expected.get()); const STACK_OF(X509_NAME) *received = SSL_get_client_CA_list(ssl); const size_t num_received = sk_X509_NAME_num(received); if (num_received != num_expected) { fprintf(stderr, "expected %u names in CertificateRequest but got %u.\n", static_cast(num_expected), static_cast(num_received)); return false; } for (size_t i = 0; i < num_received; i++) { if (X509_NAME_cmp(sk_X509_NAME_value(received, i), sk_X509_NAME_value(expected.get(), i)) != 0) { fprintf(stderr, "names in CertificateRequest differ at index #%d.\n", static_cast(i)); return false; } } const STACK_OF(CRYPTO_BUFFER) *buffers = SSL_get0_server_requested_CAs(ssl); if (sk_CRYPTO_BUFFER_num(buffers) != num_received) { fprintf(stderr, "Mismatch between SSL_get_server_requested_CAs and " "SSL_get_client_CA_list.\n"); return false; } } return true; } static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) { if (!CheckCertificateRequest(ssl)) { return -1; } if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) { return -1; } bssl::UniquePtr x509; bssl::UniquePtr chain; bssl::UniquePtr pkey; if (!GetCertificate(ssl, &x509, &chain, &pkey)) { return -1; } // Return zero for no certificate. if (!x509) { return 0; } // Chains and asynchronous private keys are not supported with client_cert_cb. *out_x509 = x509.release(); *out_pkey = pkey.release(); return 1; } static ssl_private_key_result_t AsyncPrivateKeyComplete(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out); static ssl_private_key_result_t AsyncPrivateKeySign( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, uint16_t signature_algorithm, const uint8_t *in, size_t in_len) { TestState *test_state = GetTestState(ssl); test_state->used_private_key = true; if (!test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n"); abort(); } if (EVP_PKEY_id(test_state->private_key.get()) != SSL_get_signature_algorithm_key_type(signature_algorithm)) { fprintf(stderr, "Key type does not match signature algorithm.\n"); abort(); } // Determine the hash. const EVP_MD *md = SSL_get_signature_algorithm_digest(signature_algorithm); bssl::ScopedEVP_MD_CTX ctx; EVP_PKEY_CTX *pctx; if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, test_state->private_key.get())) { return ssl_private_key_failure; } // Configure additional signature parameters. if (SSL_is_signature_algorithm_rsa_pss(signature_algorithm)) { if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) { return ssl_private_key_failure; } } // Write the signature into |test_state|. size_t len = 0; if (!EVP_DigestSign(ctx.get(), nullptr, &len, in, in_len)) { return ssl_private_key_failure; } test_state->private_key_result.resize(len); if (!EVP_DigestSign(ctx.get(), test_state->private_key_result.data(), &len, in, in_len)) { return ssl_private_key_failure; } test_state->private_key_result.resize(len); return AsyncPrivateKeyComplete(ssl, out, out_len, max_out); } static ssl_private_key_result_t AsyncPrivateKeyDecrypt(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *in, size_t in_len) { TestState *test_state = GetTestState(ssl); test_state->used_private_key = true; if (!test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeyDecrypt called with operation pending.\n"); abort(); } RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get()); if (rsa == NULL) { fprintf(stderr, "AsyncPrivateKeyDecrypt called with incorrect key type.\n"); abort(); } test_state->private_key_result.resize(RSA_size(rsa)); if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(), RSA_size(rsa), in, in_len, RSA_NO_PADDING)) { return ssl_private_key_failure; } test_state->private_key_result.resize(*out_len); return AsyncPrivateKeyComplete(ssl, out, out_len, max_out); } static ssl_private_key_result_t AsyncPrivateKeyComplete(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { TestState *test_state = GetTestState(ssl); if (test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeyComplete called without operation pending.\n"); abort(); } if (GetTestConfig(ssl)->async && test_state->private_key_retries < 2) { // Only return the decryption on the second attempt, to test both incomplete // |sign|/|decrypt| and |complete|. return ssl_private_key_retry; } if (max_out < test_state->private_key_result.size()) { fprintf(stderr, "Output buffer too small.\n"); return ssl_private_key_failure; } OPENSSL_memcpy(out, test_state->private_key_result.data(), test_state->private_key_result.size()); *out_len = test_state->private_key_result.size(); test_state->private_key_result.clear(); test_state->private_key_retries = 0; return ssl_private_key_success; } static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = { AsyncPrivateKeySign, AsyncPrivateKeyDecrypt, AsyncPrivateKeyComplete, }; static bool InstallCertificate(SSL *ssl) { bssl::UniquePtr x509; bssl::UniquePtr chain; bssl::UniquePtr pkey; if (!GetCertificate(ssl, &x509, &chain, &pkey)) { return false; } if (pkey) { TestState *test_state = GetTestState(ssl); const TestConfig *config = GetTestConfig(ssl); if (config->async || config->handshake_hints) { // Install a custom private key if testing asynchronous callbacks, or if // testing handshake hints. In the handshake hints case, we wish to check // that hints only mismatch when allowed. test_state->private_key = std::move(pkey); SSL_set_private_key_method(ssl, &g_async_private_key_method); } else if (!SSL_use_PrivateKey(ssl, pkey.get())) { return false; } } if (x509 && !SSL_use_certificate(ssl, x509.get())) { return false; } if (sk_X509_num(chain.get()) > 0 && !SSL_set1_chain(ssl, chain.get())) { return false; } return true; } static enum ssl_select_cert_result_t SelectCertificateCallback( const SSL_CLIENT_HELLO *client_hello) { SSL *ssl = client_hello->ssl; const TestConfig *config = GetTestConfig(ssl); TestState *test_state = GetTestState(ssl); test_state->early_callback_called = true; if (!config->expect_server_name.empty()) { const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (server_name == nullptr || std::string(server_name) != config->expect_server_name) { fprintf(stderr, "Server name mismatch in early callback (got %s; want %s).\n", server_name, config->expect_server_name.c_str()); return ssl_select_cert_error; } } if (config->fail_early_callback) { return ssl_select_cert_error; } // Simulate some asynchronous work in the early callback. if ((config->use_early_callback || test_state->get_handshake_hints_cb) && config->async && !test_state->early_callback_ready) { return ssl_select_cert_retry; } if (test_state->get_handshake_hints_cb && !test_state->get_handshake_hints_cb(client_hello)) { return ssl_select_cert_error; } if (config->use_early_callback && !InstallCertificate(ssl)) { return ssl_select_cert_error; } return ssl_select_cert_success; } static int SetQuicReadSecret(SSL *ssl, enum ssl_encryption_level_t level, const SSL_CIPHER *cipher, const uint8_t *secret, size_t secret_len) { MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get(); if (quic_transport == nullptr) { fprintf(stderr, "No QUIC transport.\n"); return 0; } return quic_transport->SetReadSecret(level, cipher, secret, secret_len); } static int SetQuicWriteSecret(SSL *ssl, enum ssl_encryption_level_t level, const SSL_CIPHER *cipher, const uint8_t *secret, size_t secret_len) { MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get(); if (quic_transport == nullptr) { fprintf(stderr, "No QUIC transport.\n"); return 0; } return quic_transport->SetWriteSecret(level, cipher, secret, secret_len); } static int AddQuicHandshakeData(SSL *ssl, enum ssl_encryption_level_t level, const uint8_t *data, size_t len) { MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get(); if (quic_transport == nullptr) { fprintf(stderr, "No QUIC transport.\n"); return 0; } return quic_transport->WriteHandshakeData(level, data, len); } static int FlushQuicFlight(SSL *ssl) { MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get(); if (quic_transport == nullptr) { fprintf(stderr, "No QUIC transport.\n"); return 0; } return quic_transport->Flush(); } static int SendQuicAlert(SSL *ssl, enum ssl_encryption_level_t level, uint8_t alert) { MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get(); if (quic_transport == nullptr) { fprintf(stderr, "No QUIC transport.\n"); return 0; } return quic_transport->SendAlert(level, alert); } static const SSL_QUIC_METHOD g_quic_method = { SetQuicReadSecret, SetQuicWriteSecret, AddQuicHandshakeData, FlushQuicFlight, SendQuicAlert, }; bssl::UniquePtr TestConfig::SetupCtx(SSL_CTX *old_ctx) const { bssl::UniquePtr ssl_ctx( SSL_CTX_new(is_dtls ? DTLS_method() : TLS_method())); if (!ssl_ctx) { return nullptr; } CRYPTO_once(&once, init_once); SSL_CTX_set0_buffer_pool(ssl_ctx.get(), g_pool); std::string cipher_list = "ALL"; if (!cipher.empty()) { cipher_list = cipher; SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE); } if (!SSL_CTX_set_strict_cipher_list(ssl_ctx.get(), cipher_list.c_str())) { return nullptr; } if (async && is_server) { // Disable the internal session cache. To test asynchronous session lookup, // we use an external session cache. SSL_CTX_set_session_cache_mode( ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL); SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback); } else { SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH); } SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback); if (use_old_client_cert_callback) { SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback); } SSL_CTX_set_next_protos_advertised_cb(ssl_ctx.get(), NextProtosAdvertisedCallback, NULL); if (!select_next_proto.empty()) { SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback, NULL); } if (!select_alpn.empty() || decline_alpn || reject_alpn || select_empty_alpn) { SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL); } SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback); SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback); SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback); SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback); if (use_ticket_callback || handshake_hints) { // If using handshake hints, always enable the ticket callback, so we can // check that hints only mismatch when allowed. The ticket callback also // uses a constant key, which simplifies the test. SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback); } if (!use_custom_verify_callback) { SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), CertVerifyCallback, NULL); } if (!signed_cert_timestamps.empty() && !SSL_CTX_set_signed_cert_timestamp_list( ssl_ctx.get(), (const uint8_t *)signed_cert_timestamps.data(), signed_cert_timestamps.size())) { return nullptr; } if (!use_client_ca_list.empty()) { if (use_client_ca_list == "") { SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr); } else if (use_client_ca_list == "") { bssl::UniquePtr names; SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release()); } else { bssl::UniquePtr names = DecodeHexX509Names(use_client_ca_list); SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release()); } } if (enable_grease) { SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1); } if (!expect_server_name.empty()) { SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback); } if (enable_early_data) { SSL_CTX_set_early_data_enabled(ssl_ctx.get(), 1); } if (allow_unknown_alpn_protos) { SSL_CTX_set_allow_unknown_alpn_protos(ssl_ctx.get(), 1); } if (!verify_prefs.empty()) { std::vector u16s(verify_prefs.begin(), verify_prefs.end()); if (!SSL_CTX_set_verify_algorithm_prefs(ssl_ctx.get(), u16s.data(), u16s.size())) { return nullptr; } } SSL_CTX_set_msg_callback(ssl_ctx.get(), MessageCallback); if (allow_false_start_without_alpn) { SSL_CTX_set_false_start_allowed_without_alpn(ssl_ctx.get(), 1); } if (use_ocsp_callback) { SSL_CTX_set_tlsext_status_cb(ssl_ctx.get(), LegacyOCSPCallback); } if (old_ctx) { uint8_t keys[48]; if (!SSL_CTX_get_tlsext_ticket_keys(old_ctx, &keys, sizeof(keys)) || !SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), keys, sizeof(keys))) { return nullptr; } CopySessions(ssl_ctx.get(), old_ctx); } else if (!ticket_key.empty() && !SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), ticket_key.data(), ticket_key.size())) { return nullptr; } if (install_cert_compression_algs && (!SSL_CTX_add_cert_compression_alg( ssl_ctx.get(), 0xff02, [](SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) -> int { if (!CBB_add_u8(out, 1) || !CBB_add_u8(out, 2) || !CBB_add_u8(out, 3) || !CBB_add_u8(out, 4) || !CBB_add_bytes(out, in, in_len)) { return 0; } return 1; }, [](SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len, const uint8_t *in, size_t in_len) -> int { if (in_len < 4 || in[0] != 1 || in[1] != 2 || in[2] != 3 || in[3] != 4 || uncompressed_len != in_len - 4) { return 0; } const bssl::Span uncompressed(in + 4, in_len - 4); *out = CRYPTO_BUFFER_new(uncompressed.data(), uncompressed.size(), nullptr); return 1; }) || !SSL_CTX_add_cert_compression_alg( ssl_ctx.get(), 0xff01, [](SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) -> int { if (in_len < 2 || in[0] != 0 || in[1] != 0) { return 0; } return CBB_add_bytes(out, in + 2, in_len - 2); }, [](SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len, const uint8_t *in, size_t in_len) -> int { if (uncompressed_len != 2 + in_len) { return 0; } std::unique_ptr buf(new uint8_t[2 + in_len]); buf[0] = 0; buf[1] = 0; OPENSSL_memcpy(&buf[2], in, in_len); *out = CRYPTO_BUFFER_new(buf.get(), 2 + in_len, nullptr); return 1; }))) { fprintf(stderr, "SSL_CTX_add_cert_compression_alg failed.\n"); abort(); } if (server_preference) { SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE); } if (is_quic) { SSL_CTX_set_quic_method(ssl_ctx.get(), &g_quic_method); } return ssl_ctx; } static int DDoSCallback(const SSL_CLIENT_HELLO *client_hello) { const TestConfig *config = GetTestConfig(client_hello->ssl); return config->fail_ddos_callback ? 0 : 1; } static unsigned PskClientCallback(SSL *ssl, const char *hint, char *out_identity, unsigned max_identity_len, uint8_t *out_psk, unsigned max_psk_len) { const TestConfig *config = GetTestConfig(ssl); if (config->psk_identity.empty()) { if (hint != nullptr) { fprintf(stderr, "Server PSK hint was non-null.\n"); return 0; } } else if (hint == nullptr || strcmp(hint, config->psk_identity.c_str()) != 0) { fprintf(stderr, "Server PSK hint did not match.\n"); return 0; } // Account for the trailing '\0' for the identity. if (config->psk_identity.size() >= max_identity_len || config->psk.size() > max_psk_len) { fprintf(stderr, "PSK buffers too small.\n"); return 0; } OPENSSL_strlcpy(out_identity, config->psk_identity.c_str(), max_identity_len); OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size()); return config->psk.size(); } static unsigned PskServerCallback(SSL *ssl, const char *identity, uint8_t *out_psk, unsigned max_psk_len) { const TestConfig *config = GetTestConfig(ssl); if (strcmp(identity, config->psk_identity.c_str()) != 0) { fprintf(stderr, "Client PSK identity did not match.\n"); return 0; } if (config->psk.size() > max_psk_len) { fprintf(stderr, "PSK buffers too small.\n"); return 0; } OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size()); return config->psk.size(); } static ssl_verify_result_t CustomVerifyCallback(SSL *ssl, uint8_t *out_alert) { const TestConfig *config = GetTestConfig(ssl); if (!CheckVerifyCallback(ssl)) { return ssl_verify_invalid; } if (config->async && !GetTestState(ssl)->custom_verify_ready) { return ssl_verify_retry; } GetTestState(ssl)->cert_verified = true; if (config->verify_fail) { return ssl_verify_invalid; } return ssl_verify_ok; } static int CertCallback(SSL *ssl, void *arg) { const TestConfig *config = GetTestConfig(ssl); // Check the peer certificate metadata is as expected. if ((!SSL_is_server(ssl) && !CheckCertificateRequest(ssl)) || !CheckPeerVerifyPrefs(ssl)) { return -1; } if (config->fail_cert_callback) { return 0; } // The certificate will be installed via other means. if (!config->async || config->use_early_callback) { return 1; } if (!GetTestState(ssl)->cert_ready) { return -1; } if (!InstallCertificate(ssl)) { return 0; } return 1; } bssl::UniquePtr TestConfig::NewSSL( SSL_CTX *ssl_ctx, SSL_SESSION *session, std::unique_ptr test_state) const { bssl::UniquePtr ssl(SSL_new(ssl_ctx)); if (!ssl) { return nullptr; } if (!SetTestConfig(ssl.get(), this)) { return nullptr; } if (test_state != nullptr) { if (!SetTestState(ssl.get(), std::move(test_state))) { return nullptr; } } if (fallback_scsv && !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) { return nullptr; } // Install the certificate synchronously if nothing else will handle it. if (!use_early_callback && !use_old_client_cert_callback && !async && !InstallCertificate(ssl.get())) { return nullptr; } if (!use_old_client_cert_callback) { SSL_set_cert_cb(ssl.get(), CertCallback, nullptr); } int mode = SSL_VERIFY_NONE; if (require_any_client_certificate) { mode = SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT; } if (verify_peer) { mode = SSL_VERIFY_PEER; } if (verify_peer_if_no_obc) { // Set SSL_VERIFY_FAIL_IF_NO_PEER_CERT so testing whether client // certificates were requested is easy. mode = SSL_VERIFY_PEER | SSL_VERIFY_PEER_IF_NO_OBC | SSL_VERIFY_FAIL_IF_NO_PEER_CERT; } if (use_custom_verify_callback) { SSL_set_custom_verify(ssl.get(), mode, CustomVerifyCallback); } else if (mode != SSL_VERIFY_NONE) { SSL_set_verify(ssl.get(), mode, NULL); } if (false_start) { SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START); } if (cbc_record_splitting) { SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING); } if (partial_write) { SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); } if (reverify_on_resume) { SSL_CTX_set_reverify_on_resume(ssl_ctx, 1); } if (enforce_rsa_key_usage) { SSL_set_enforce_rsa_key_usage(ssl.get(), 1); } if (no_tls13) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3); } if (no_tls12) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2); } if (no_tls11) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1); } if (no_tls1) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1); } if (no_ticket) { SSL_set_options(ssl.get(), SSL_OP_NO_TICKET); } if (!expect_channel_id.empty() || enable_channel_id) { SSL_set_tls_channel_id_enabled(ssl.get(), 1); } if (enable_ech_grease) { SSL_set_enable_ech_grease(ssl.get(), 1); } if (ech_server_configs.size() != ech_server_keys.size() || ech_server_configs.size() != ech_is_retry_config.size()) { fprintf(stderr, "-ech-server-config, -ech-server-key, and -ech-is-retry-config " "flags must match.\n"); return nullptr; } if (!ech_server_configs.empty()) { bssl::UniquePtr config_list( SSL_ECH_SERVER_CONFIG_LIST_new()); if (!config_list) { return nullptr; } for (size_t i = 0; i < ech_server_configs.size(); i++) { const std::string &ech_config = ech_server_configs[i]; const std::string &ech_private_key = ech_server_keys[i]; const int is_retry_config = ech_is_retry_config[i]; if (!SSL_ECH_SERVER_CONFIG_LIST_add( config_list.get(), is_retry_config, reinterpret_cast(ech_config.data()), ech_config.size(), reinterpret_cast(ech_private_key.data()), ech_private_key.size())) { return nullptr; } } if (!SSL_CTX_set1_ech_server_config_list(ssl_ctx, config_list.get())) { return nullptr; } } if (!send_channel_id.empty()) { SSL_set_tls_channel_id_enabled(ssl.get(), 1); if (!async) { // The async case will be supplied by |ChannelIdCallback|. bssl::UniquePtr pkey = LoadPrivateKey(send_channel_id); if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) { return nullptr; } } } if (!send_token_binding_params.empty()) { SSL_set_token_binding_params( ssl.get(), reinterpret_cast(send_token_binding_params.data()), send_token_binding_params.length()); } if (!host_name.empty() && !SSL_set_tlsext_host_name(ssl.get(), host_name.c_str())) { return nullptr; } if (!advertise_alpn.empty() && SSL_set_alpn_protos( ssl.get(), reinterpret_cast(advertise_alpn.data()), advertise_alpn.size()) != 0) { return nullptr; } if (!defer_alps) { for (const auto &pair : application_settings) { if (!SSL_add_application_settings( ssl.get(), reinterpret_cast(pair.first.data()), pair.first.size(), reinterpret_cast(pair.second.data()), pair.second.size())) { return nullptr; } } } if (!psk.empty()) { SSL_set_psk_client_callback(ssl.get(), PskClientCallback); SSL_set_psk_server_callback(ssl.get(), PskServerCallback); } if (!psk_identity.empty() && !SSL_use_psk_identity_hint(ssl.get(), psk_identity.c_str())) { return nullptr; } if (!srtp_profiles.empty() && !SSL_set_srtp_profiles(ssl.get(), srtp_profiles.c_str())) { return nullptr; } if (enable_ocsp_stapling) { SSL_enable_ocsp_stapling(ssl.get()); } if (enable_signed_cert_timestamps) { SSL_enable_signed_cert_timestamps(ssl.get()); } if (min_version != 0 && !SSL_set_min_proto_version(ssl.get(), (uint16_t)min_version)) { return nullptr; } if (max_version != 0 && !SSL_set_max_proto_version(ssl.get(), (uint16_t)max_version)) { return nullptr; } if (mtu != 0) { SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU); SSL_set_mtu(ssl.get(), mtu); } if (install_ddos_callback) { SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback); } SSL_set_shed_handshake_config(ssl.get(), true); if (renegotiate_once) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once); } if (renegotiate_freely || forbid_renegotiation_after_handshake) { // |forbid_renegotiation_after_handshake| will disable renegotiation later. SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely); } if (renegotiate_ignore) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore); } if (renegotiate_explicit) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_explicit); } if (!check_close_notify) { SSL_set_quiet_shutdown(ssl.get(), 1); } if (!curves.empty()) { std::vector nids; for (auto curve : curves) { switch (curve) { case SSL_CURVE_SECP224R1: nids.push_back(NID_secp224r1); break; case SSL_CURVE_SECP256R1: nids.push_back(NID_X9_62_prime256v1); break; case SSL_CURVE_SECP384R1: nids.push_back(NID_secp384r1); break; case SSL_CURVE_SECP521R1: nids.push_back(NID_secp521r1); break; case SSL_CURVE_X25519: nids.push_back(NID_X25519); break; case SSL_CURVE_CECPQ2: nids.push_back(NID_CECPQ2); break; } if (!SSL_set1_curves(ssl.get(), &nids[0], nids.size())) { return nullptr; } } } if (initial_timeout_duration_ms > 0) { DTLSv1_set_initial_timeout_duration(ssl.get(), initial_timeout_duration_ms); } if (max_cert_list > 0) { SSL_set_max_cert_list(ssl.get(), max_cert_list); } if (retain_only_sha256_client_cert) { SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1); } if (max_send_fragment > 0) { SSL_set_max_send_fragment(ssl.get(), max_send_fragment); } if (quic_use_legacy_codepoint != -1) { SSL_set_quic_use_legacy_codepoint(ssl.get(), quic_use_legacy_codepoint); } if (!quic_transport_params.empty()) { if (!SSL_set_quic_transport_params( ssl.get(), reinterpret_cast(quic_transport_params.data()), quic_transport_params.size())) { return nullptr; } } if (jdk11_workaround) { SSL_set_jdk11_workaround(ssl.get(), 1); } if (session != NULL) { if (!is_server) { if (SSL_set_session(ssl.get(), session) != 1) { return nullptr; } } else if (async) { // The internal session cache is disabled, so install the session // manually. SSL_SESSION_up_ref(session); GetTestState(ssl.get())->pending_session.reset(session); } } if (!delegated_credential.empty()) { std::string::size_type comma = delegated_credential.find(','); if (comma == std::string::npos) { fprintf(stderr, "failed to find comma in delegated credential argument.\n"); return nullptr; } const std::string dc_hex = delegated_credential.substr(0, comma); const std::string pkcs8_hex = delegated_credential.substr(comma + 1); std::string dc, pkcs8; if (!HexDecode(&dc, dc_hex) || !HexDecode(&pkcs8, pkcs8_hex)) { fprintf(stderr, "failed to hex decode delegated credential argument.\n"); return nullptr; } CBS dc_cbs(bssl::Span( reinterpret_cast(dc.data()), dc.size())); CBS pkcs8_cbs(bssl::Span( reinterpret_cast(pkcs8.data()), pkcs8.size())); bssl::UniquePtr priv(EVP_parse_private_key(&pkcs8_cbs)); if (!priv) { fprintf(stderr, "failed to parse delegated credential private key.\n"); return nullptr; } bssl::UniquePtr dc_buf( CRYPTO_BUFFER_new_from_CBS(&dc_cbs, nullptr)); if (!SSL_set1_delegated_credential(ssl.get(), dc_buf.get(), priv.get(), nullptr)) { fprintf(stderr, "SSL_set1_delegated_credential failed.\n"); return nullptr; } } if (!quic_early_data_context.empty() && !SSL_set_quic_early_data_context( ssl.get(), reinterpret_cast(quic_early_data_context.data()), quic_early_data_context.size())) { return nullptr; } return ssl; }