// This file is generated from a similarly-named Perl script in the BoringSSL // source tree. Do not edit by hand. #if !defined(__has_feature) #define __has_feature(x) 0 #endif #if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM) #define OPENSSL_NO_ASM #endif #if !defined(OPENSSL_NO_ASM) && defined(__AARCH64EL__) && defined(_WIN32) #if defined(BORINGSSL_PREFIX) #include #endif #include "openssl/arm_arch.h" .text .globl beeu_mod_inverse_vartime .align 4 beeu_mod_inverse_vartime: // Reserve enough space for 14 8-byte registers on the stack // in the first stp call for x29, x30. // Then store the remaining callee-saved registers. // // | x29 | x30 | x19 | x20 | ... | x27 | x28 | x0 | x2 | // ^ ^ // sp <------------------- 112 bytes ----------------> old sp // x29 (FP) // AARCH64_SIGN_LINK_REGISTER stp x29,x30,[sp,#-112]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] stp x0,x2,[sp,#96] // B = b3..b0 := a ldp x25,x26,[x1] ldp x27,x28,[x1,#16] // n3..n0 := n // Note: the value of input params are changed in the following. ldp x0,x1,[x2] ldp x2,x30,[x2,#16] // A = a3..a0 := n mov x21, x0 mov x22, x1 mov x23, x2 mov x24, x30 // X = x4..x0 := 1 mov x3, #1 eor x4, x4, x4 eor x5, x5, x5 eor x6, x6, x6 eor x7, x7, x7 // Y = y4..y0 := 0 eor x8, x8, x8 eor x9, x9, x9 eor x10, x10, x10 eor x11, x11, x11 eor x12, x12, x12 Lbeeu_loop: // if B == 0, jump to .Lbeeu_loop_end orr x14, x25, x26 orr x14, x14, x27 // reverse the bit order of x25. This is needed for clz after this macro rbit x15, x25 orr x14, x14, x28 cbz x14,Lbeeu_loop_end // 0 < B < |n|, // 0 < A <= |n|, // (1) X*a == B (mod |n|), // (2) (-1)*Y*a == A (mod |n|) // Now divide B by the maximum possible power of two in the // integers, and divide X by the same value mod |n|. // When we're done, (1) still holds. // shift := number of trailing 0s in x25 // ( = number of leading 0s in x15; see the "rbit" instruction in TEST_B_ZERO) clz x13, x15 // If there is no shift, goto shift_A_Y cbz x13, Lbeeu_shift_A_Y // Shift B right by "x13" bits neg x14, x13 lsr x25, x25, x13 lsl x15, x26, x14 lsr x26, x26, x13 lsl x19, x27, x14 orr x25, x25, x15 lsr x27, x27, x13 lsl x20, x28, x14 orr x26, x26, x19 lsr x28, x28, x13 orr x27, x27, x20 // Shift X right by "x13" bits, adding n whenever X becomes odd. // x13--; // x14 := 0; needed in the addition to the most significant word in SHIFT1 eor x14, x14, x14 Lbeeu_shift_loop_X: tbz x3, #0, Lshift1_0 adds x3, x3, x0 adcs x4, x4, x1 adcs x5, x5, x2 adcs x6, x6, x30 adc x7, x7, x14 Lshift1_0: // var0 := [var1|var0]<64..1>; // i.e. concatenate var1 and var0, // extract bits <64..1> from the resulting 128-bit value // and put them in var0 extr x3, x4, x3, #1 extr x4, x5, x4, #1 extr x5, x6, x5, #1 extr x6, x7, x6, #1 lsr x7, x7, #1 subs x13, x13, #1 bne Lbeeu_shift_loop_X // Note: the steps above perform the same sequence as in p256_beeu-x86_64-asm.pl // with the following differences: // - "x13" is set directly to the number of trailing 0s in B // (using rbit and clz instructions) // - The loop is only used to call SHIFT1(X) // and x13 is decreased while executing the X loop. // - SHIFT256(B, x13) is performed before right-shifting X; they are independent Lbeeu_shift_A_Y: // Same for A and Y. // Afterwards, (2) still holds. // Reverse the bit order of x21 // x13 := number of trailing 0s in x21 (= number of leading 0s in x15) rbit x15, x21 clz x13, x15 // If there is no shift, goto |B-A|, X+Y update cbz x13, Lbeeu_update_B_X_or_A_Y // Shift A right by "x13" bits neg x14, x13 lsr x21, x21, x13 lsl x15, x22, x14 lsr x22, x22, x13 lsl x19, x23, x14 orr x21, x21, x15 lsr x23, x23, x13 lsl x20, x24, x14 orr x22, x22, x19 lsr x24, x24, x13 orr x23, x23, x20 // Shift Y right by "x13" bits, adding n whenever Y becomes odd. // x13--; // x14 := 0; needed in the addition to the most significant word in SHIFT1 eor x14, x14, x14 Lbeeu_shift_loop_Y: tbz x8, #0, Lshift1_1 adds x8, x8, x0 adcs x9, x9, x1 adcs x10, x10, x2 adcs x11, x11, x30 adc x12, x12, x14 Lshift1_1: // var0 := [var1|var0]<64..1>; // i.e. concatenate var1 and var0, // extract bits <64..1> from the resulting 128-bit value // and put them in var0 extr x8, x9, x8, #1 extr x9, x10, x9, #1 extr x10, x11, x10, #1 extr x11, x12, x11, #1 lsr x12, x12, #1 subs x13, x13, #1 bne Lbeeu_shift_loop_Y Lbeeu_update_B_X_or_A_Y: // Try T := B - A; if cs, continue with B > A (cs: carry set = no borrow) // Note: this is a case of unsigned arithmetic, where T fits in 4 64-bit words // without taking a sign bit if generated. The lack of a carry would // indicate a negative result. See, for example, // https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/condition-codes-1-condition-flags-and-codes subs x14, x25, x21 sbcs x15, x26, x22 sbcs x19, x27, x23 sbcs x20, x28, x24 bcs Lbeeu_B_greater_than_A // Else A > B => // A := A - B; Y := Y + X; goto beginning of the loop subs x21, x21, x25 sbcs x22, x22, x26 sbcs x23, x23, x27 sbcs x24, x24, x28 adds x8, x8, x3 adcs x9, x9, x4 adcs x10, x10, x5 adcs x11, x11, x6 adc x12, x12, x7 b Lbeeu_loop Lbeeu_B_greater_than_A: // Continue with B > A => // B := B - A; X := X + Y; goto beginning of the loop mov x25, x14 mov x26, x15 mov x27, x19 mov x28, x20 adds x3, x3, x8 adcs x4, x4, x9 adcs x5, x5, x10 adcs x6, x6, x11 adc x7, x7, x12 b Lbeeu_loop Lbeeu_loop_end: // The Euclid's algorithm loop ends when A == gcd(a,n); // this would be 1, when a and n are co-prime (i.e. do not have a common factor). // Since (-1)*Y*a == A (mod |n|), Y>0 // then out = -Y mod n // Verify that A = 1 ==> (-1)*Y*a = A = 1 (mod |n|) // Is A-1 == 0? // If not, fail. sub x14, x21, #1 orr x14, x14, x22 orr x14, x14, x23 orr x14, x14, x24 cbnz x14, Lbeeu_err // If Y>n ==> Y:=Y-n Lbeeu_reduction_loop: // x_i := y_i - n_i (X is no longer needed, use it as temp) // (x14 = 0 from above) subs x3, x8, x0 sbcs x4, x9, x1 sbcs x5, x10, x2 sbcs x6, x11, x30 sbcs x7, x12, x14 // If result is non-negative (i.e., cs = carry set = no borrow), // y_i := x_i; goto reduce again // else // y_i := y_i; continue csel x8, x3, x8, cs csel x9, x4, x9, cs csel x10, x5, x10, cs csel x11, x6, x11, cs csel x12, x7, x12, cs bcs Lbeeu_reduction_loop // Now Y < n (Y cannot be equal to n, since the inverse cannot be 0) // out = -Y = n-Y subs x8, x0, x8 sbcs x9, x1, x9 sbcs x10, x2, x10 sbcs x11, x30, x11 // Save Y in output (out (x0) was saved on the stack) ldr x3, [sp,#96] stp x8, x9, [x3] stp x10, x11, [x3,#16] // return 1 (success) mov x0, #1 b Lbeeu_finish Lbeeu_err: // return 0 (error) eor x0, x0, x0 Lbeeu_finish: // Restore callee-saved registers, except x0, x2 add sp,x29,#0 ldp x19,x20,[sp,#16] ldp x21,x22,[sp,#32] ldp x23,x24,[sp,#48] ldp x25,x26,[sp,#64] ldp x27,x28,[sp,#80] ldp x29,x30,[sp],#112 AARCH64_VALIDATE_LINK_REGISTER ret #endif // !OPENSSL_NO_ASM && defined(__AARCH64EL__) && defined(_WIN32) #if defined(__ELF__) // See https://www.airs.com/blog/archives/518. .section .note.GNU-stack,"",%progbits #endif