// This file is generated from a similarly-named Perl script in the BoringSSL // source tree. Do not edit by hand. #if !defined(__has_feature) #define __has_feature(x) 0 #endif #if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM) #define OPENSSL_NO_ASM #endif #if !defined(OPENSSL_NO_ASM) && defined(__ARMEL__) && defined(__ELF__) #if defined(BORINGSSL_PREFIX) #include #endif .syntax unified .arch armv7-a .fpu neon #if defined(__thumb2__) .thumb #else .code 32 #endif .text .type _vpaes_consts,%object .align 7 @ totally strategic alignment _vpaes_consts: .Lk_mc_forward:@ mc_forward .quad 0x0407060500030201, 0x0C0F0E0D080B0A09 .quad 0x080B0A0904070605, 0x000302010C0F0E0D .quad 0x0C0F0E0D080B0A09, 0x0407060500030201 .quad 0x000302010C0F0E0D, 0x080B0A0904070605 .Lk_mc_backward:@ mc_backward .quad 0x0605040702010003, 0x0E0D0C0F0A09080B .quad 0x020100030E0D0C0F, 0x0A09080B06050407 .quad 0x0E0D0C0F0A09080B, 0x0605040702010003 .quad 0x0A09080B06050407, 0x020100030E0D0C0F .Lk_sr:@ sr .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908 .quad 0x030E09040F0A0500, 0x0B06010C07020D08 .quad 0x0F060D040B020900, 0x070E050C030A0108 .quad 0x0B0E0104070A0D00, 0x0306090C0F020508 @ @ "Hot" constants @ .Lk_inv:@ inv, inva .quad 0x0E05060F0D080180, 0x040703090A0B0C02 .quad 0x01040A060F0B0780, 0x030D0E0C02050809 .Lk_ipt:@ input transform (lo, hi) .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808 .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81 .Lk_sbo:@ sbou, sbot .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878 .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA .Lk_sb1:@ sb1u, sb1t .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544 .Lk_sb2:@ sb2u, sb2t .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD .byte 86,101,99,116,111,114,32,80,101,114,109,117,116,97,116,105,111,110,32,65,69,83,32,102,111,114,32,65,82,77,118,55,32,78,69,79,78,44,32,77,105,107,101,32,72,97,109,98,117,114,103,32,40,83,116,97,110,102,111,114,100,32,85,110,105,118,101,114,115,105,116,121,41,0 .align 2 .size _vpaes_consts,.-_vpaes_consts .align 6 @@ @@ _aes_preheat @@ @@ Fills q9-q15 as specified below. @@ .type _vpaes_preheat,%function .align 4 _vpaes_preheat: adr r10, .Lk_inv vmov.i8 q9, #0x0f @ .Lk_s0F vld1.64 {q10,q11}, [r10]! @ .Lk_inv add r10, r10, #64 @ Skip .Lk_ipt, .Lk_sbo vld1.64 {q12,q13}, [r10]! @ .Lk_sb1 vld1.64 {q14,q15}, [r10] @ .Lk_sb2 bx lr @@ @@ _aes_encrypt_core @@ @@ AES-encrypt q0. @@ @@ Inputs: @@ q0 = input @@ q9-q15 as in _vpaes_preheat @@ [r2] = scheduled keys @@ @@ Output in q0 @@ Clobbers q1-q5, r8-r11 @@ Preserves q6-q8 so you get some local vectors @@ @@ .type _vpaes_encrypt_core,%function .align 4 _vpaes_encrypt_core: mov r9, r2 ldr r8, [r2,#240] @ pull rounds adr r11, .Lk_ipt @ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo @ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi vld1.64 {q2, q3}, [r11] adr r11, .Lk_mc_forward+16 vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 vtbl.8 d2, {q2}, d2 @ vpshufb %xmm1, %xmm2, %xmm1 vtbl.8 d3, {q2}, d3 vtbl.8 d4, {q3}, d0 @ vpshufb %xmm0, %xmm3, %xmm2 vtbl.8 d5, {q3}, d1 veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0 veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 @ .Lenc_entry ends with a bnz instruction which is normally paired with @ subs in .Lenc_loop. tst r8, r8 b .Lenc_entry .align 4 .Lenc_loop: @ middle of middle round add r10, r11, #0x40 vtbl.8 d8, {q13}, d4 @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u vtbl.8 d9, {q13}, d5 vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] vtbl.8 d0, {q12}, d6 @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t vtbl.8 d1, {q12}, d7 veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k vtbl.8 d10, {q15}, d4 @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u vtbl.8 d11, {q15}, d5 veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A vtbl.8 d4, {q14}, d6 @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t vtbl.8 d5, {q14}, d7 vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] vtbl.8 d6, {q0}, d2 @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B vtbl.8 d7, {q0}, d3 veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A @ Write to q5 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 d10, {q0}, d8 @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D vtbl.8 d11, {q0}, d9 veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B vtbl.8 d8, {q3}, d2 @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C vtbl.8 d9, {q3}, d3 @ Here we restore the original q0/q5 usage. veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D and r11, r11, #~(1<<6) @ and $0x30, %r11 # ... mod 4 veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D subs r8, r8, #1 @ nr-- .Lenc_entry: @ top of round vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i vtbl.8 d10, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k vtbl.8 d11, {q11}, d3 veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vtbl.8 d7, {q10}, d1 vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vtbl.8 d9, {q10}, d3 veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vtbl.8 d4, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vtbl.8 d5, {q10}, d7 vtbl.8 d6, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak vtbl.8 d7, {q10}, d9 veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 bne .Lenc_loop @ middle of last round add r10, r11, #0x80 adr r11, .Lk_sbo @ Read to q1 instead of q4, so the vtbl.8 instruction below does not @ overlap table and destination registers. vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 vtbl.8 d8, {q1}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou vtbl.8 d9, {q1}, d5 vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] @ Write to q2 instead of q0 below, to avoid overlapping table and @ destination registers. vtbl.8 d4, {q0}, d6 @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t vtbl.8 d5, {q0}, d7 veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A @ Here we restore the original q0/q2 usage. vtbl.8 d0, {q2}, d2 @ vpshufb %xmm1, %xmm0, %xmm0 vtbl.8 d1, {q2}, d3 bx lr .size _vpaes_encrypt_core,.-_vpaes_encrypt_core .globl vpaes_encrypt .hidden vpaes_encrypt .type vpaes_encrypt,%function .align 4 vpaes_encrypt: @ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack @ alignment. stmdb sp!, {r7,r8,r9,r10,r11,lr} @ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved. vstmdb sp!, {d8,d9,d10,d11} vld1.64 {q0}, [r0] bl _vpaes_preheat bl _vpaes_encrypt_core vst1.64 {q0}, [r1] vldmia sp!, {d8,d9,d10,d11} ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return .size vpaes_encrypt,.-vpaes_encrypt @ @ Decryption stuff @ .type _vpaes_decrypt_consts,%object .align 4 _vpaes_decrypt_consts: .Lk_dipt:@ decryption input transform .quad 0x0F505B040B545F00, 0x154A411E114E451A .quad 0x86E383E660056500, 0x12771772F491F194 .Lk_dsbo:@ decryption sbox final output .quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D .quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C .Lk_dsb9:@ decryption sbox output *9*u, *9*t .quad 0x851C03539A86D600, 0xCAD51F504F994CC9 .quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565 .Lk_dsbd:@ decryption sbox output *D*u, *D*t .quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439 .quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3 .Lk_dsbb:@ decryption sbox output *B*u, *B*t .quad 0xD022649296B44200, 0x602646F6B0F2D404 .quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B .Lk_dsbe:@ decryption sbox output *E*u, *E*t .quad 0x46F2929626D4D000, 0x2242600464B4F6B0 .quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32 .size _vpaes_decrypt_consts,.-_vpaes_decrypt_consts @@ @@ Decryption core @@ @@ Same API as encryption core, except it clobbers q12-q15 rather than using @@ the values from _vpaes_preheat. q9-q11 must still be set from @@ _vpaes_preheat. @@ .type _vpaes_decrypt_core,%function .align 4 _vpaes_decrypt_core: mov r9, r2 ldr r8, [r2,#240] @ pull rounds @ This function performs shuffles with various constants. The x86_64 @ version loads them on-demand into %xmm0-%xmm5. This does not work well @ for ARMv7 because those registers are shuffle destinations. The ARMv8 @ version preloads those constants into registers, but ARMv7 has half @ the registers to work with. Instead, we load them on-demand into @ q12-q15, registers normally use for preloaded constants. This is fine @ because decryption doesn't use those constants. The values are @ constant, so this does not interfere with potential 2x optimizations. adr r7, .Lk_dipt vld1.64 {q12,q13}, [r7] @ vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo lsl r11, r8, #4 @ mov %rax, %r11; shl $4, %r11 eor r11, r11, #0x30 @ xor $0x30, %r11 adr r10, .Lk_sr and r11, r11, #0x30 @ and $0x30, %r11 add r11, r11, r10 adr r10, .Lk_mc_forward+48 vld1.64 {q4}, [r9]! @ vmovdqu (%r9), %xmm4 # round0 key vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 vtbl.8 d4, {q12}, d2 @ vpshufb %xmm1, %xmm2, %xmm2 vtbl.8 d5, {q12}, d3 vld1.64 {q5}, [r10] @ vmovdqa .Lk_mc_forward+48(%rip), %xmm5 @ vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi vtbl.8 d0, {q13}, d0 @ vpshufb %xmm0, %xmm1, %xmm0 vtbl.8 d1, {q13}, d1 veor q2, q2, q4 @ vpxor %xmm4, %xmm2, %xmm2 veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 @ .Ldec_entry ends with a bnz instruction which is normally paired with @ subs in .Ldec_loop. tst r8, r8 b .Ldec_entry .align 4 .Ldec_loop: @ @ Inverse mix columns @ @ We load .Lk_dsb* into q12-q15 on-demand. See the comment at the top of @ the function. adr r10, .Lk_dsb9 vld1.64 {q12,q13}, [r10]! @ vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u @ vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t @ Load sbd* ahead of time. vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu @ vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt vtbl.8 d8, {q12}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u vtbl.8 d9, {q12}, d5 vtbl.8 d2, {q13}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t vtbl.8 d3, {q13}, d7 veor q0, q4, q0 @ vpxor %xmm4, %xmm0, %xmm0 veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch @ Load sbb* ahead of time. vld1.64 {q12,q13}, [r10]! @ vmovdqa 0x20(%r10),%xmm4 # 4 : sbbu @ vmovdqa 0x30(%r10),%xmm1 # 0 : sbbt vtbl.8 d8, {q14}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu vtbl.8 d9, {q14}, d5 @ Write to q1 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 d2, {q0}, d10 @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch vtbl.8 d3, {q0}, d11 @ Here we restore the original q0/q1 usage. This instruction is @ reordered from the ARMv8 version so we do not clobber the vtbl.8 @ below. veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vtbl.8 d2, {q15}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt vtbl.8 d3, {q15}, d7 @ vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch @ vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt @ Load sbd* ahead of time. vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x40(%r10),%xmm4 # 4 : sbeu @ vmovdqa 0x50(%r10),%xmm1 # 0 : sbet vtbl.8 d8, {q12}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu vtbl.8 d9, {q12}, d5 @ Write to q1 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 d2, {q0}, d10 @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch vtbl.8 d3, {q0}, d11 @ Here we restore the original q0/q1 usage. This instruction is @ reordered from the ARMv8 version so we do not clobber the vtbl.8 @ below. veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vtbl.8 d2, {q13}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt vtbl.8 d3, {q13}, d7 veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch vtbl.8 d8, {q14}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu vtbl.8 d9, {q14}, d5 @ Write to q1 instead of q0, so the table and destination registers do @ not overlap. vtbl.8 d2, {q0}, d10 @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch vtbl.8 d3, {q0}, d11 @ Here we restore the original q0/q1 usage. This instruction is @ reordered from the ARMv8 version so we do not clobber the vtbl.8 @ below. veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch vtbl.8 d2, {q15}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet vtbl.8 d3, {q15}, d7 vext.8 q5, q5, q5, #12 @ vpalignr $12, %xmm5, %xmm5, %xmm5 veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch subs r8, r8, #1 @ sub $1,%rax # nr-- .Ldec_entry: @ top of round vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i vtbl.8 d4, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vtbl.8 d5, {q11}, d3 veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vtbl.8 d7, {q10}, d1 vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vtbl.8 d9, {q10}, d3 veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vtbl.8 d4, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak vtbl.8 d5, {q10}, d7 vtbl.8 d6, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak vtbl.8 d7, {q10}, d9 veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo vld1.64 {q0}, [r9]! @ vmovdqu (%r9), %xmm0 bne .Ldec_loop @ middle of last round adr r10, .Lk_dsbo @ Write to q1 rather than q4 to avoid overlapping table and destination. vld1.64 {q1}, [r10]! @ vmovdqa 0x60(%r10), %xmm4 # 3 : sbou vtbl.8 d8, {q1}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou vtbl.8 d9, {q1}, d5 @ Write to q2 rather than q1 to avoid overlapping table and destination. vld1.64 {q2}, [r10] @ vmovdqa 0x70(%r10), %xmm1 # 0 : sbot vtbl.8 d2, {q2}, d6 @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t vtbl.8 d3, {q2}, d7 vld1.64 {q2}, [r11] @ vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 veor q4, q4, q0 @ vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k @ Write to q1 rather than q0 so the table and destination registers @ below do not overlap. veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm0 # 0 = A vtbl.8 d0, {q1}, d4 @ vpshufb %xmm2, %xmm0, %xmm0 vtbl.8 d1, {q1}, d5 bx lr .size _vpaes_decrypt_core,.-_vpaes_decrypt_core .globl vpaes_decrypt .hidden vpaes_decrypt .type vpaes_decrypt,%function .align 4 vpaes_decrypt: @ _vpaes_decrypt_core uses r7-r11. stmdb sp!, {r7,r8,r9,r10,r11,lr} @ _vpaes_decrypt_core uses q4-q5 (d8-d11), which are callee-saved. vstmdb sp!, {d8,d9,d10,d11} vld1.64 {q0}, [r0] bl _vpaes_preheat bl _vpaes_decrypt_core vst1.64 {q0}, [r1] vldmia sp!, {d8,d9,d10,d11} ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return .size vpaes_decrypt,.-vpaes_decrypt @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@ @@ @@ AES key schedule @@ @@ @@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ This function diverges from both x86_64 and armv7 in which constants are @ pinned. x86_64 has a common preheat function for all operations. aarch64 @ separates them because it has enough registers to pin nearly all constants. @ armv7 does not have enough registers, but needing explicit loads and stores @ also complicates using x86_64's register allocation directly. @ @ We pin some constants for convenience and leave q14 and q15 free to load @ others on demand. @ @ Key schedule constants @ .type _vpaes_key_consts,%object .align 4 _vpaes_key_consts: .Lk_dksd:@ decryption key schedule: invskew x*D .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9 .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E .Lk_dksb:@ decryption key schedule: invskew x*B .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99 .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8 .Lk_dkse:@ decryption key schedule: invskew x*E + 0x63 .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086 .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487 .Lk_dks9:@ decryption key schedule: invskew x*9 .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE .Lk_rcon:@ rcon .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81 .Lk_opt:@ output transform .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808 .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0 .Lk_deskew:@ deskew tables: inverts the sbox's "skew" .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77 .size _vpaes_key_consts,.-_vpaes_key_consts .type _vpaes_key_preheat,%function .align 4 _vpaes_key_preheat: adr r11, .Lk_rcon vmov.i8 q12, #0x5b @ .Lk_s63 adr r10, .Lk_inv @ Must be aligned to 8 mod 16. vmov.i8 q9, #0x0f @ .Lk_s0F vld1.64 {q10,q11}, [r10] @ .Lk_inv vld1.64 {q8}, [r11] @ .Lk_rcon bx lr .size _vpaes_key_preheat,.-_vpaes_key_preheat .type _vpaes_schedule_core,%function .align 4 _vpaes_schedule_core: @ We only need to save lr, but ARM requires an 8-byte stack alignment, @ so save an extra register. stmdb sp!, {r3,lr} bl _vpaes_key_preheat @ load the tables adr r11, .Lk_ipt @ Must be aligned to 8 mod 16. vld1.64 {q0}, [r0]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned) @ input transform @ Use q4 here rather than q3 so .Lschedule_am_decrypting does not @ overlap table and destination. vmov q4, q0 @ vmovdqa %xmm0, %xmm3 bl _vpaes_schedule_transform adr r10, .Lk_sr @ Must be aligned to 8 mod 16. vmov q7, q0 @ vmovdqa %xmm0, %xmm7 add r8, r8, r10 tst r3, r3 bne .Lschedule_am_decrypting @ encrypting, output zeroth round key after transform vst1.64 {q0}, [r2] @ vmovdqu %xmm0, (%rdx) b .Lschedule_go .Lschedule_am_decrypting: @ decrypting, output zeroth round key after shiftrows vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 vtbl.8 d6, {q4}, d2 @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 d7, {q4}, d3 vst1.64 {q3}, [r2] @ vmovdqu %xmm3, (%rdx) eor r8, r8, #0x30 @ xor $0x30, %r8 .Lschedule_go: cmp r1, #192 @ cmp $192, %esi bhi .Lschedule_256 beq .Lschedule_192 @ 128: fall though @@ @@ .schedule_128 @@ @@ 128-bit specific part of key schedule. @@ @@ This schedule is really simple, because all its parts @@ are accomplished by the subroutines. @@ .Lschedule_128: mov r0, #10 @ mov $10, %esi .Loop_schedule_128: bl _vpaes_schedule_round subs r0, r0, #1 @ dec %esi beq .Lschedule_mangle_last bl _vpaes_schedule_mangle @ write output b .Loop_schedule_128 @@ @@ .aes_schedule_192 @@ @@ 192-bit specific part of key schedule. @@ @@ The main body of this schedule is the same as the 128-bit @@ schedule, but with more smearing. The long, high side is @@ stored in q7 as before, and the short, low side is in @@ the high bits of q6. @@ @@ This schedule is somewhat nastier, however, because each @@ round produces 192 bits of key material, or 1.5 round keys. @@ Therefore, on each cycle we do 2 rounds and produce 3 round @@ keys. @@ .align 4 .Lschedule_192: sub r0, r0, #8 vld1.64 {q0}, [r0] @ vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) bl _vpaes_schedule_transform @ input transform vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save short part vmov.i8 d12, #0 @ vpxor %xmm4, %xmm4, %xmm4 # clear 4 @ vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros mov r0, #4 @ mov $4, %esi .Loop_schedule_192: bl _vpaes_schedule_round vext.8 q0, q6, q0, #8 @ vpalignr $8,%xmm6,%xmm0,%xmm0 bl _vpaes_schedule_mangle @ save key n bl _vpaes_schedule_192_smear bl _vpaes_schedule_mangle @ save key n+1 bl _vpaes_schedule_round subs r0, r0, #1 @ dec %esi beq .Lschedule_mangle_last bl _vpaes_schedule_mangle @ save key n+2 bl _vpaes_schedule_192_smear b .Loop_schedule_192 @@ @@ .aes_schedule_256 @@ @@ 256-bit specific part of key schedule. @@ @@ The structure here is very similar to the 128-bit @@ schedule, but with an additional "low side" in @@ q6. The low side's rounds are the same as the @@ high side's, except no rcon and no rotation. @@ .align 4 .Lschedule_256: vld1.64 {q0}, [r0] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) bl _vpaes_schedule_transform @ input transform mov r0, #7 @ mov $7, %esi .Loop_schedule_256: bl _vpaes_schedule_mangle @ output low result vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6 @ high round bl _vpaes_schedule_round subs r0, r0, #1 @ dec %esi beq .Lschedule_mangle_last bl _vpaes_schedule_mangle @ low round. swap xmm7 and xmm6 vdup.32 q0, d1[1] @ vpshufd $0xFF, %xmm0, %xmm0 vmov.i8 q4, #0 vmov q5, q7 @ vmovdqa %xmm7, %xmm5 vmov q7, q6 @ vmovdqa %xmm6, %xmm7 bl _vpaes_schedule_low_round vmov q7, q5 @ vmovdqa %xmm5, %xmm7 b .Loop_schedule_256 @@ @@ .aes_schedule_mangle_last @@ @@ Mangler for last round of key schedule @@ Mangles q0 @@ when encrypting, outputs out(q0) ^ 63 @@ when decrypting, outputs unskew(q0) @@ @@ Always called right before return... jumps to cleanup and exits @@ .align 4 .Lschedule_mangle_last: @ schedule last round key from xmm0 adr r11, .Lk_deskew @ lea .Lk_deskew(%rip),%r11 # prepare to deskew tst r3, r3 bne .Lschedule_mangle_last_dec @ encrypting vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1 adr r11, .Lk_opt @ lea .Lk_opt(%rip), %r11 # prepare to output transform add r2, r2, #32 @ add $32, %rdx vmov q2, q0 vtbl.8 d0, {q2}, d2 @ vpshufb %xmm1, %xmm0, %xmm0 # output permute vtbl.8 d1, {q2}, d3 .Lschedule_mangle_last_dec: sub r2, r2, #16 @ add $-16, %rdx veor q0, q0, q12 @ vpxor .Lk_s63(%rip), %xmm0, %xmm0 bl _vpaes_schedule_transform @ output transform vst1.64 {q0}, [r2] @ vmovdqu %xmm0, (%rdx) # save last key @ cleanup veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0 veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1 veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2 veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3 veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4 veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5 veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6 veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7 ldmia sp!, {r3,pc} @ return .size _vpaes_schedule_core,.-_vpaes_schedule_core @@ @@ .aes_schedule_192_smear @@ @@ Smear the short, low side in the 192-bit key schedule. @@ @@ Inputs: @@ q7: high side, b a x y @@ q6: low side, d c 0 0 @@ @@ Outputs: @@ q6: b+c+d b+c 0 0 @@ q0: b+c+d b+c b a @@ .type _vpaes_schedule_192_smear,%function .align 4 _vpaes_schedule_192_smear: vmov.i8 q1, #0 vdup.32 q0, d15[1] vshl.i64 q1, q6, #32 @ vpshufd $0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 vmov d0, d15 @ vpshufd $0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a veor q6, q6, q1 @ vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0 veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1 veor q6, q6, q0 @ vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a vmov q0, q6 @ vmovdqa %xmm6, %xmm0 vmov d12, d2 @ vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros bx lr .size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear @@ @@ .aes_schedule_round @@ @@ Runs one main round of the key schedule on q0, q7 @@ @@ Specifically, runs subbytes on the high dword of q0 @@ then rotates it by one byte and xors into the low dword of @@ q7. @@ @@ Adds rcon from low byte of q8, then rotates q8 for @@ next rcon. @@ @@ Smears the dwords of q7 by xoring the low into the @@ second low, result into third, result into highest. @@ @@ Returns results in q7 = q0. @@ Clobbers q1-q4, r11. @@ .type _vpaes_schedule_round,%function .align 4 _vpaes_schedule_round: @ extract rcon from xmm8 vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4 vext.8 q1, q8, q4, #15 @ vpalignr $15, %xmm8, %xmm4, %xmm1 vext.8 q8, q8, q8, #15 @ vpalignr $15, %xmm8, %xmm8, %xmm8 veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7 @ rotate vdup.32 q0, d1[1] @ vpshufd $0xFF, %xmm0, %xmm0 vext.8 q0, q0, q0, #1 @ vpalignr $1, %xmm0, %xmm0, %xmm0 @ fall through... @ low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: @ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12. @ We pin other values in _vpaes_key_preheat, so load them now. adr r11, .Lk_sb1 vld1.64 {q14,q15}, [r11] @ smear xmm7 vext.8 q1, q4, q7, #12 @ vpslldq $4, %xmm7, %xmm1 veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7 vext.8 q4, q4, q7, #8 @ vpslldq $8, %xmm7, %xmm4 @ subbytes vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7 vtbl.8 d4, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k vtbl.8 d5, {q11}, d3 veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i vtbl.8 d7, {q10}, d1 veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j vtbl.8 d9, {q10}, d3 veor q7, q7, q12 @ vpxor .Lk_s63(%rip), %xmm7, %xmm7 vtbl.8 d6, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak vtbl.8 d7, {q10}, d7 veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k vtbl.8 d4, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak vtbl.8 d5, {q10}, d9 veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo vtbl.8 d8, {q15}, d6 @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou vtbl.8 d9, {q15}, d7 vtbl.8 d2, {q14}, d4 @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t vtbl.8 d3, {q14}, d5 veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output @ add in smeared stuff veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0 veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7 bx lr .size _vpaes_schedule_round,.-_vpaes_schedule_round @@ @@ .aes_schedule_transform @@ @@ Linear-transform q0 according to tables at [r11] @@ @@ Requires that q9 = 0x0F0F... as in preheat @@ Output in q0 @@ Clobbers q1, q2, q14, q15 @@ .type _vpaes_schedule_transform,%function .align 4 _vpaes_schedule_transform: vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo @ vmovdqa 16(%r11), %xmm1 # hi vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 vtbl.8 d4, {q14}, d2 @ vpshufb %xmm1, %xmm2, %xmm2 vtbl.8 d5, {q14}, d3 vtbl.8 d0, {q15}, d0 @ vpshufb %xmm0, %xmm1, %xmm0 vtbl.8 d1, {q15}, d1 veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 bx lr .size _vpaes_schedule_transform,.-_vpaes_schedule_transform @@ @@ .aes_schedule_mangle @@ @@ Mangles q0 from (basis-transformed) standard version @@ to our version. @@ @@ On encrypt, @@ xor with 0x63 @@ multiply by circulant 0,1,1,1 @@ apply shiftrows transform @@ @@ On decrypt, @@ xor with 0x63 @@ multiply by "inverse mixcolumns" circulant E,B,D,9 @@ deskew @@ apply shiftrows transform @@ @@ @@ Writes out to [r2], and increments or decrements it @@ Keeps track of round number mod 4 in r8 @@ Preserves q0 @@ Clobbers q1-q5 @@ .type _vpaes_schedule_mangle,%function .align 4 _vpaes_schedule_mangle: tst r3, r3 vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later adr r11, .Lk_mc_forward @ Must be aligned to 8 mod 16. vld1.64 {q5}, [r11] @ vmovdqa .Lk_mc_forward(%rip),%xmm5 bne .Lschedule_mangle_dec @ encrypting @ Write to q2 so we do not overlap table and destination below. veor q2, q0, q12 @ vpxor .Lk_s63(%rip), %xmm0, %xmm4 add r2, r2, #16 @ add $16, %rdx vtbl.8 d8, {q2}, d10 @ vpshufb %xmm5, %xmm4, %xmm4 vtbl.8 d9, {q2}, d11 vtbl.8 d2, {q4}, d10 @ vpshufb %xmm5, %xmm4, %xmm1 vtbl.8 d3, {q4}, d11 vtbl.8 d6, {q1}, d10 @ vpshufb %xmm5, %xmm1, %xmm3 vtbl.8 d7, {q1}, d11 veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4 vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3 b .Lschedule_mangle_both .align 4 .Lschedule_mangle_dec: @ inverse mix columns adr r11, .Lk_dksd @ lea .Lk_dksd(%rip),%r11 vshr.u8 q1, q4, #4 @ vpsrlb $4, %xmm4, %xmm1 # 1 = hi vand q4, q4, q9 @ vpand %xmm9, %xmm4, %xmm4 # 4 = lo vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x00(%r11), %xmm2 @ vmovdqa 0x10(%r11), %xmm3 vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 d5, {q14}, d9 vtbl.8 d6, {q15}, d2 @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 d7, {q15}, d3 @ Load .Lk_dksb ahead of time. vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x20(%r11), %xmm2 @ vmovdqa 0x30(%r11), %xmm3 @ Write to q13 so we do not overlap table and destination. veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 vtbl.8 d6, {q13}, d10 @ vpshufb %xmm5, %xmm3, %xmm3 vtbl.8 d7, {q13}, d11 vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 d5, {q14}, d9 veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 vtbl.8 d6, {q15}, d2 @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 d7, {q15}, d3 @ Load .Lk_dkse ahead of time. vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x40(%r11), %xmm2 @ vmovdqa 0x50(%r11), %xmm3 @ Write to q13 so we do not overlap table and destination. veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 vtbl.8 d6, {q13}, d10 @ vpshufb %xmm5, %xmm3, %xmm3 vtbl.8 d7, {q13}, d11 vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 d5, {q14}, d9 veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 vtbl.8 d6, {q15}, d2 @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 d7, {q15}, d3 @ Load .Lk_dkse ahead of time. vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x60(%r11), %xmm2 @ vmovdqa 0x70(%r11), %xmm4 @ Write to q13 so we do not overlap table and destination. veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 vtbl.8 d4, {q14}, d8 @ vpshufb %xmm4, %xmm2, %xmm2 vtbl.8 d5, {q14}, d9 vtbl.8 d6, {q13}, d10 @ vpshufb %xmm5, %xmm3, %xmm3 vtbl.8 d7, {q13}, d11 vtbl.8 d8, {q15}, d2 @ vpshufb %xmm1, %xmm4, %xmm4 vtbl.8 d9, {q15}, d3 vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 veor q3, q4, q2 @ vpxor %xmm2, %xmm4, %xmm3 sub r2, r2, #16 @ add $-16, %rdx .Lschedule_mangle_both: @ Write to q2 so table and destination do not overlap. vtbl.8 d4, {q3}, d2 @ vpshufb %xmm1, %xmm3, %xmm3 vtbl.8 d5, {q3}, d3 add r8, r8, #64-16 @ add $-16, %r8 and r8, r8, #~(1<<6) @ and $0x30, %r8 vst1.64 {q2}, [r2] @ vmovdqu %xmm3, (%rdx) bx lr .size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle .globl vpaes_set_encrypt_key .hidden vpaes_set_encrypt_key .type vpaes_set_encrypt_key,%function .align 4 vpaes_set_encrypt_key: stmdb sp!, {r7,r8,r9,r10,r11, lr} vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15} lsr r9, r1, #5 @ shr $5,%eax add r9, r9, #5 @ $5,%eax str r9, [r2,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; mov r3, #0 @ mov $0,%ecx mov r8, #0x30 @ mov $0x30,%r8d bl _vpaes_schedule_core eor r0, r0, r0 vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15} ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return .size vpaes_set_encrypt_key,.-vpaes_set_encrypt_key .globl vpaes_set_decrypt_key .hidden vpaes_set_decrypt_key .type vpaes_set_decrypt_key,%function .align 4 vpaes_set_decrypt_key: stmdb sp!, {r7,r8,r9,r10,r11, lr} vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15} lsr r9, r1, #5 @ shr $5,%eax add r9, r9, #5 @ $5,%eax str r9, [r2,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; lsl r9, r9, #4 @ shl $4,%eax add r2, r2, #16 @ lea 16(%rdx,%rax),%rdx add r2, r2, r9 mov r3, #1 @ mov $1,%ecx lsr r8, r1, #1 @ shr $1,%r8d and r8, r8, #32 @ and $32,%r8d eor r8, r8, #32 @ xor $32,%r8d # nbits==192?0:32 bl _vpaes_schedule_core vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15} ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return .size vpaes_set_decrypt_key,.-vpaes_set_decrypt_key @ Additional constants for converting to bsaes. .type _vpaes_convert_consts,%object .align 4 _vpaes_convert_consts: @ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear @ transform in the AES S-box. 0x63 is incorporated into the low half of the @ table. This was computed with the following script: @ @ def u64s_to_u128(x, y): @ return x | (y << 64) @ def u128_to_u64s(w): @ return w & ((1<<64)-1), w >> 64 @ def get_byte(w, i): @ return (w >> (i*8)) & 0xff @ def apply_table(table, b): @ lo = b & 0xf @ hi = b >> 4 @ return get_byte(table[0], lo) ^ get_byte(table[1], hi) @ def opt(b): @ table = [ @ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808), @ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0), @ ] @ return apply_table(table, b) @ def rot_byte(b, n): @ return 0xff & ((b << n) | (b >> (8-n))) @ def skew(x): @ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^ @ rot_byte(x, 4)) @ table = [0, 0] @ for i in range(16): @ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8) @ table[1] |= skew(opt(i<<4)) << (i*8) @ print(" .quad 0x%016x, 0x%016x" % u128_to_u64s(table[0])) @ print(" .quad 0x%016x, 0x%016x" % u128_to_u64s(table[1])) .Lk_opt_then_skew: .quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b .quad 0x1f30062936192f00, 0xb49bad829db284ab @ .Lk_decrypt_transform is a permutation which performs an 8-bit left-rotation @ followed by a byte-swap on each 32-bit word of a vector. E.g., 0x11223344 @ becomes 0x22334411 and then 0x11443322. .Lk_decrypt_transform: .quad 0x0704050603000102, 0x0f0c0d0e0b08090a .size _vpaes_convert_consts,.-_vpaes_convert_consts @ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes); .globl vpaes_encrypt_key_to_bsaes .hidden vpaes_encrypt_key_to_bsaes .type vpaes_encrypt_key_to_bsaes,%function .align 4 vpaes_encrypt_key_to_bsaes: stmdb sp!, {r11, lr} @ See _vpaes_schedule_core for the key schedule logic. In particular, @ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper), @ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last @ contain the transformations not in the bsaes representation. This @ function inverts those transforms. @ @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key @ representation, which does not match the other aes_nohw_* @ implementations. The ARM aes_nohw_* stores each 32-bit word @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the @ cost of extra REV and VREV32 operations in little-endian ARM. vmov.i8 q9, #0x0f @ Required by _vpaes_schedule_transform adr r2, .Lk_mc_forward @ Must be aligned to 8 mod 16. add r3, r2, 0x90 @ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression) vld1.64 {q12}, [r2] vmov.i8 q10, #0x5b @ .Lk_s63 from vpaes-x86_64 adr r11, .Lk_opt @ Must be aligned to 8 mod 16. vmov.i8 q11, #0x63 @ .LK_s63 without .Lk_ipt applied @ vpaes stores one fewer round count than bsaes, but the number of keys @ is the same. ldr r2, [r1,#240] add r2, r2, #1 str r2, [r0,#240] @ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt). @ Invert this with .Lk_opt. vld1.64 {q0}, [r1]! bl _vpaes_schedule_transform vrev32.8 q0, q0 vst1.64 {q0}, [r0]! @ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied, @ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63, @ multiplies by the circulant 0,1,1,1, then applies ShiftRows. .Loop_enc_key_to_bsaes: vld1.64 {q0}, [r1]! @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle @ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30. @ We use r3 rather than r8 to avoid a callee-saved register. vld1.64 {q1}, [r3] vtbl.8 d4, {q0}, d2 vtbl.8 d5, {q0}, d3 add r3, r3, #16 and r3, r3, #~(1<<6) vmov q0, q2 @ Handle the last key differently. subs r2, r2, #1 beq .Loop_enc_key_to_bsaes_last @ Multiply by the circulant. This is its own inverse. vtbl.8 d2, {q0}, d24 vtbl.8 d3, {q0}, d25 vmov q0, q1 vtbl.8 d4, {q1}, d24 vtbl.8 d5, {q1}, d25 veor q0, q0, q2 vtbl.8 d2, {q2}, d24 vtbl.8 d3, {q2}, d25 veor q0, q0, q1 @ XOR and finish. veor q0, q0, q10 bl _vpaes_schedule_transform vrev32.8 q0, q0 vst1.64 {q0}, [r0]! b .Loop_enc_key_to_bsaes .Loop_enc_key_to_bsaes_last: @ The final key does not have a basis transform (note @ .Lschedule_mangle_last inverts the original transform). It only XORs @ 0x63 and applies ShiftRows. The latter was already inverted in the @ loop. Note that, because we act on the original representation, we use @ q11, not q10. veor q0, q0, q11 vrev32.8 q0, q0 vst1.64 {q0}, [r0] @ Wipe registers which contained key material. veor q0, q0, q0 veor q1, q1, q1 veor q2, q2, q2 ldmia sp!, {r11, pc} @ return .size vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes @ void vpaes_decrypt_key_to_bsaes(AES_KEY *vpaes, const AES_KEY *bsaes); .globl vpaes_decrypt_key_to_bsaes .hidden vpaes_decrypt_key_to_bsaes .type vpaes_decrypt_key_to_bsaes,%function .align 4 vpaes_decrypt_key_to_bsaes: stmdb sp!, {r11, lr} @ See _vpaes_schedule_core for the key schedule logic. Note vpaes @ computes the decryption key schedule in reverse. Additionally, @ aes-x86_64.pl shares some transformations, so we must only partially @ invert vpaes's transformations. In general, vpaes computes in a @ different basis (.Lk_ipt and .Lk_opt) and applies the inverses of @ MixColumns, ShiftRows, and the affine part of the AES S-box (which is @ split into a linear skew and XOR of 0x63). We undo all but MixColumns. @ @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key @ representation, which does not match the other aes_nohw_* @ implementations. The ARM aes_nohw_* stores each 32-bit word @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the @ cost of extra REV and VREV32 operations in little-endian ARM. adr r2, .Lk_decrypt_transform adr r3, .Lk_sr+0x30 adr r11, .Lk_opt_then_skew @ Input to _vpaes_schedule_transform. vld1.64 {q12}, [r2] @ Reuse q12 from encryption. vmov.i8 q9, #0x0f @ Required by _vpaes_schedule_transform @ vpaes stores one fewer round count than bsaes, but the number of keys @ is the same. ldr r2, [r1,#240] add r2, r2, #1 str r2, [r0,#240] @ Undo the basis change and reapply the S-box affine transform. See @ .Lschedule_mangle_last. vld1.64 {q0}, [r1]! bl _vpaes_schedule_transform vrev32.8 q0, q0 vst1.64 {q0}, [r0]! @ See _vpaes_schedule_mangle for the transform on the middle keys. Note @ it simultaneously inverts MixColumns and the S-box affine transform. @ See .Lk_dksd through .Lk_dks9. .Loop_dec_key_to_bsaes: vld1.64 {q0}, [r1]! @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note going @ forwards cancels inverting for which direction we cycle r3. We use r3 @ rather than r8 to avoid a callee-saved register. vld1.64 {q1}, [r3] vtbl.8 d4, {q0}, d2 vtbl.8 d5, {q0}, d3 add r3, r3, #64-16 and r3, r3, #~(1<<6) vmov q0, q2 @ Handle the last key differently. subs r2, r2, #1 beq .Loop_dec_key_to_bsaes_last @ Undo the basis change and reapply the S-box affine transform. bl _vpaes_schedule_transform @ Rotate each word by 8 bytes (cycle the rows) and then byte-swap. We @ combine the two operations in .Lk_decrypt_transform. @ @ TODO(davidben): Where does the rotation come from? vtbl.8 d2, {q0}, d24 vtbl.8 d3, {q0}, d25 vst1.64 {q1}, [r0]! b .Loop_dec_key_to_bsaes .Loop_dec_key_to_bsaes_last: @ The final key only inverts ShiftRows (already done in the loop). See @ .Lschedule_am_decrypting. Its basis is not transformed. vrev32.8 q0, q0 vst1.64 {q0}, [r0]! @ Wipe registers which contained key material. veor q0, q0, q0 veor q1, q1, q1 veor q2, q2, q2 ldmia sp!, {r11, pc} @ return .size vpaes_decrypt_key_to_bsaes,.-vpaes_decrypt_key_to_bsaes .globl vpaes_ctr32_encrypt_blocks .hidden vpaes_ctr32_encrypt_blocks .type vpaes_ctr32_encrypt_blocks,%function .align 4 vpaes_ctr32_encrypt_blocks: mov ip, sp stmdb sp!, {r7,r8,r9,r10,r11, lr} @ This function uses q4-q7 (d8-d15), which are callee-saved. vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15} cmp r2, #0 @ r8 is passed on the stack. ldr r8, [ip] beq .Lctr32_done @ _vpaes_encrypt_core expects the key in r2, so swap r2 and r3. mov r9, r3 mov r3, r2 mov r2, r9 @ Load the IV and counter portion. ldr r7, [r8, #12] vld1.8 {q7}, [r8] bl _vpaes_preheat rev r7, r7 @ The counter is big-endian. .Lctr32_loop: vmov q0, q7 vld1.8 {q6}, [r0]! @ .Load input ahead of time bl _vpaes_encrypt_core veor q0, q0, q6 @ XOR input and result vst1.8 {q0}, [r1]! subs r3, r3, #1 @ Update the counter. add r7, r7, #1 rev r9, r7 vmov.32 d15[1], r9 bne .Lctr32_loop .Lctr32_done: vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15} ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return .size vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks #endif // !OPENSSL_NO_ASM && defined(__ARMEL__) && defined(__ELF__) #if defined(__ELF__) // See https://www.airs.com/blog/archives/518. .section .note.GNU-stack,"",%progbits #endif