#[allow(dead_code)] #[derive(Debug, Clone, Copy, PartialEq, Eq)] // Do I need the PartialEq? #[repr(u8)] pub enum Color { Black = 0, Blue = 1, Green = 2, Cyan = 3, Red = 4, Magenta = 5, Brown = 6, LightGray = 7, DarkGray = 8, LightBlue = 9, LightGreen = 10, LightCyan = 11, LightRed = 12, Pink = 13, Yellow = 14, White = 15, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[repr(transparent)] struct ColorCode(u8); impl ColorCode { fn new(foreground: Color, background: Color) -> ColorCode { ColorCode((background as u8) << 4 | (foreground as u8)) } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[repr(C)] struct ScreenChar { ascii_character: u8, color_code: ColorCode, } const BUFFER_HEIGHT: usize = 25; const BUFFER_WIDTH: usize = 80; use volatile::Volatile; #[repr(transparent)] struct Buffer { // Since we're only ever writing to the buffer, aggressive compiler // optimizations may think that it is useless and optimize it away // Wrap it with volatile chars: [[Volatile; BUFFER_WIDTH]; BUFFER_HEIGHT], } pub struct Writer { column_position: usize, color_code: ColorCode, buffer: &'static mut Buffer, } impl Writer { pub fn write_byte(&mut self, byte: u8) { match byte { b'\n' => self.new_line(), byte => { if self.column_position >= BUFFER_WIDTH { self.new_line(); } let row = BUFFER_HEIGHT - 1; let col = self.column_position; let color = self.color_code; self.buffer.chars[row][col].write(ScreenChar { ascii_character: byte, color_code: color, }); self.column_position += 1; } } } pub fn write_string(&mut self, s: &str) { for byte in s.bytes() { // Check if the byte is printable ASCII, otherwise print // a fallback character match byte { 0x20..=0x7e | b'\n' => self.write_byte(byte), _ => self.write_byte(0xfe), } } } fn new_line(&mut self) { for row in 1..BUFFER_HEIGHT { for col in 0..BUFFER_WIDTH { let character = self.buffer.chars[row][col].read(); self.buffer.chars[row - 1][col].write(character); } } self.clear_row(BUFFER_HEIGHT - 1); self.column_position = 0; } fn clear_row(&mut self, row: usize) { let blank = ScreenChar { ascii_character: b' ', color_code: self.color_code, }; for col in 0..BUFFER_WIDTH { self.buffer.chars[row][col].write(blank); } } } use core::fmt; impl fmt::Write for Writer { fn write_str(&mut self, s: &str) -> fmt::Result { self.write_string(s); Ok(()) } } use lazy_static::lazy_static; use spin::Mutex; lazy_static! { pub static ref WRITER: Mutex = Mutex::new(Writer { column_position: 0, color_code: ColorCode::new(Color::Yellow, Color::Black), buffer: unsafe { &mut *(0xb8000 as *mut Buffer) }, }); } #[macro_export] macro_rules! kprint { ($($arg:tt)*) => ($crate::vga_buffer::_kprint(format_args!($($arg)*))); } #[macro_export] macro_rules! kprintln { () => ($crate::kprint!("\n")); ($($arg:tt)*) => ($crate::kprint!("{}\n", format_args!($($arg)*))); } #[doc(hidden)] pub fn _kprint(args: fmt::Arguments) { use core::fmt::Write; use x86_64::instructions::interrupts; // Interrupt handlers will also need to lock this mutex if they // print stuff. That'll lead to a deadlock. So disable interrupts. interrupts::without_interrupts(|| { WRITER.lock().write_fmt(args).unwrap(); }); } #[test_case] fn test_kprintln_simple() { kprintln!("test_kprintln_simple output"); } #[test_case] fn test_kprintln_many() { for _ in 0..200 { kprintln!("test_kprintln_many output"); } } #[test_case] fn test_kprintln_output() { use core::fmt::Write; use x86_64::instructions::interrupts; let s = "Some test string that fits on a single line"; interrupts::without_interrupts(|| { let mut writer = WRITER.lock(); writeln!(writer, "\n{}", s).expect("writeln failed"); for (i, c) in s.chars().enumerate() { let screen_char = writer.buffer.chars[BUFFER_HEIGHT - 2][i].read(); assert_eq!(char::from(screen_char.ascii_character), c); } }); }