syntax = "proto3"; package envoy.api.v2.auth; import "envoy/api/v2/core/base.proto"; import "envoy/type/matcher/string.proto"; import "google/protobuf/any.proto"; import "google/protobuf/struct.proto"; import "google/protobuf/wrappers.proto"; import "udpa/annotations/migrate.proto"; import "udpa/annotations/sensitive.proto"; import "udpa/annotations/status.proto"; import "validate/validate.proto"; option java_package = "io.envoyproxy.envoy.api.v2.auth"; option java_outer_classname = "CommonProto"; option java_multiple_files = true; option go_package = "github.com/envoyproxy/go-control-plane/envoy/api/v2/auth"; option (udpa.annotations.file_migrate).move_to_package = "envoy.extensions.transport_sockets.tls.v3"; option (udpa.annotations.file_status).package_version_status = FROZEN; // [#protodoc-title: Common TLS configuration] message TlsParameters { enum TlsProtocol { // Envoy will choose the optimal TLS version. TLS_AUTO = 0; // TLS 1.0 TLSv1_0 = 1; // TLS 1.1 TLSv1_1 = 2; // TLS 1.2 TLSv1_2 = 3; // TLS 1.3 TLSv1_3 = 4; } // Minimum TLS protocol version. By default, it's ``TLSv1_2`` for both clients and servers. TlsProtocol tls_minimum_protocol_version = 1 [(validate.rules).enum = {defined_only: true}]; // Maximum TLS protocol version. By default, it's ``TLSv1_2`` for clients and ``TLSv1_3`` for // servers. TlsProtocol tls_maximum_protocol_version = 2 [(validate.rules).enum = {defined_only: true}]; // If specified, the TLS listener will only support the specified `cipher list // `_ // when negotiating TLS 1.0-1.2 (this setting has no effect when negotiating TLS 1.3). If not // specified, the default list will be used. // // In non-FIPS builds, the default cipher list is: // // .. code-block:: none // // [ECDHE-ECDSA-AES128-GCM-SHA256|ECDHE-ECDSA-CHACHA20-POLY1305] // [ECDHE-RSA-AES128-GCM-SHA256|ECDHE-RSA-CHACHA20-POLY1305] // ECDHE-ECDSA-AES128-SHA // ECDHE-RSA-AES128-SHA // AES128-GCM-SHA256 // AES128-SHA // ECDHE-ECDSA-AES256-GCM-SHA384 // ECDHE-RSA-AES256-GCM-SHA384 // ECDHE-ECDSA-AES256-SHA // ECDHE-RSA-AES256-SHA // AES256-GCM-SHA384 // AES256-SHA // // In builds using :ref:`BoringSSL FIPS `, the default cipher list is: // // .. code-block:: none // // ECDHE-ECDSA-AES128-GCM-SHA256 // ECDHE-RSA-AES128-GCM-SHA256 // ECDHE-ECDSA-AES128-SHA // ECDHE-RSA-AES128-SHA // AES128-GCM-SHA256 // AES128-SHA // ECDHE-ECDSA-AES256-GCM-SHA384 // ECDHE-RSA-AES256-GCM-SHA384 // ECDHE-ECDSA-AES256-SHA // ECDHE-RSA-AES256-SHA // AES256-GCM-SHA384 // AES256-SHA repeated string cipher_suites = 3; // If specified, the TLS connection will only support the specified ECDH // curves. If not specified, the default curves will be used. // // In non-FIPS builds, the default curves are: // // .. code-block:: none // // X25519 // P-256 // // In builds using :ref:`BoringSSL FIPS `, the default curve is: // // .. code-block:: none // // P-256 repeated string ecdh_curves = 4; } // BoringSSL private key method configuration. The private key methods are used for external // (potentially asynchronous) signing and decryption operations. Some use cases for private key // methods would be TPM support and TLS acceleration. message PrivateKeyProvider { // Private key method provider name. The name must match a // supported private key method provider type. string provider_name = 1 [(validate.rules).string = {min_bytes: 1}]; // Private key method provider specific configuration. oneof config_type { google.protobuf.Struct config = 2 [deprecated = true, (udpa.annotations.sensitive) = true]; google.protobuf.Any typed_config = 3 [(udpa.annotations.sensitive) = true]; } } // [#next-free-field: 7] message TlsCertificate { // The TLS certificate chain. core.DataSource certificate_chain = 1; // The TLS private key. core.DataSource private_key = 2 [(udpa.annotations.sensitive) = true]; // BoringSSL private key method provider. This is an alternative to :ref:`private_key // ` field. This can't be // marked as ``oneof`` due to API compatibility reasons. Setting both :ref:`private_key // ` and // :ref:`private_key_provider // ` fields will result in an // error. PrivateKeyProvider private_key_provider = 6; // The password to decrypt the TLS private key. If this field is not set, it is assumed that the // TLS private key is not password encrypted. core.DataSource password = 3 [(udpa.annotations.sensitive) = true]; // [#not-implemented-hide:] core.DataSource ocsp_staple = 4; // [#not-implemented-hide:] repeated core.DataSource signed_certificate_timestamp = 5; } message TlsSessionTicketKeys { // Keys for encrypting and decrypting TLS session tickets. The // first key in the array contains the key to encrypt all new sessions created by this context. // All keys are candidates for decrypting received tickets. This allows for easy rotation of keys // by, for example, putting the new key first, and the previous key second. // // If :ref:`session_ticket_keys ` // is not specified, the TLS library will still support resuming sessions via tickets, but it will // use an internally-generated and managed key, so sessions cannot be resumed across hot restarts // or on different hosts. // // Each key must contain exactly 80 bytes of cryptographically-secure random data. For // example, the output of ``openssl rand 80``. // // .. attention:: // // Using this feature has serious security considerations and risks. Improper handling of keys // may result in loss of secrecy in connections, even if ciphers supporting perfect forward // secrecy are used. See https://www.imperialviolet.org/2013/06/27/botchingpfs.html for some // discussion. To minimize the risk, you must: // // * Keep the session ticket keys at least as secure as your TLS certificate private keys // * Rotate session ticket keys at least daily, and preferably hourly // * Always generate keys using a cryptographically-secure random data source repeated core.DataSource keys = 1 [(validate.rules).repeated = {min_items: 1}, (udpa.annotations.sensitive) = true]; } // [#next-free-field: 11] message CertificateValidationContext { // Peer certificate verification mode. enum TrustChainVerification { // Perform default certificate verification (e.g., against CA / verification lists) VERIFY_TRUST_CHAIN = 0; // Connections where the certificate fails verification will be permitted. // For HTTP connections, the result of certificate verification can be used in route matching. ( // see :ref:`validated ` ). ACCEPT_UNTRUSTED = 1; } // TLS certificate data containing certificate authority certificates to use in verifying // a presented peer certificate (e.g. server certificate for clusters or client certificate // for listeners). If not specified and a peer certificate is presented it will not be // verified. By default, a client certificate is optional, unless one of the additional // options (:ref:`require_client_certificate // `, // :ref:`verify_certificate_spki // `, // :ref:`verify_certificate_hash // `, or // :ref:`match_subject_alt_names // `) is also // specified. // // It can optionally contain certificate revocation lists, in which case Envoy will verify // that the presented peer certificate has not been revoked by one of the included CRLs. // // See :ref:`the TLS overview ` for a list of common // system CA locations. core.DataSource trusted_ca = 1; // An optional list of base64-encoded SHA-256 hashes. If specified, Envoy will verify that the // SHA-256 of the DER-encoded Subject Public Key Information (SPKI) of the presented certificate // matches one of the specified values. // // A base64-encoded SHA-256 of the Subject Public Key Information (SPKI) of the certificate // can be generated with the following command: // // .. code-block:: bash // // $ openssl x509 -in path/to/client.crt -noout -pubkey // | openssl pkey -pubin -outform DER // | openssl dgst -sha256 -binary // | openssl enc -base64 // NvqYIYSbgK2vCJpQhObf77vv+bQWtc5ek5RIOwPiC9A= // // This is the format used in HTTP Public Key Pinning. // // When both: // :ref:`verify_certificate_hash // ` and // :ref:`verify_certificate_spki // ` are specified, // a hash matching value from either of the lists will result in the certificate being accepted. // // .. attention:: // // This option is preferred over :ref:`verify_certificate_hash // `, // because SPKI is tied to a private key, so it doesn't change when the certificate // is renewed using the same private key. repeated string verify_certificate_spki = 3 [(validate.rules).repeated = {items {string {min_bytes: 44 max_bytes: 44}}}]; // An optional list of hex-encoded SHA-256 hashes. If specified, Envoy will verify that // the SHA-256 of the DER-encoded presented certificate matches one of the specified values. // // A hex-encoded SHA-256 of the certificate can be generated with the following command: // // .. code-block:: bash // // $ openssl x509 -in path/to/client.crt -outform DER | openssl dgst -sha256 | cut -d" " -f2 // df6ff72fe9116521268f6f2dd4966f51df479883fe7037b39f75916ac3049d1a // // A long hex-encoded and colon-separated SHA-256 (a.k.a. "fingerprint") of the certificate // can be generated with the following command: // // .. code-block:: bash // // $ openssl x509 -in path/to/client.crt -noout -fingerprint -sha256 | cut -d"=" -f2 // DF:6F:F7:2F:E9:11:65:21:26:8F:6F:2D:D4:96:6F:51:DF:47:98:83:FE:70:37:B3:9F:75:91:6A:C3:04:9D:1A // // Both of those formats are acceptable. // // When both: // :ref:`verify_certificate_hash // ` and // :ref:`verify_certificate_spki // ` are specified, // a hash matching value from either of the lists will result in the certificate being accepted. repeated string verify_certificate_hash = 2 [(validate.rules).repeated = {items {string {min_bytes: 64 max_bytes: 95}}}]; // An optional list of Subject Alternative Names. If specified, Envoy will verify that the // Subject Alternative Name of the presented certificate matches one of the specified values. // // .. attention:: // // Subject Alternative Names are easily spoofable and verifying only them is insecure, // therefore this option must be used together with :ref:`trusted_ca // `. repeated string verify_subject_alt_name = 4 [deprecated = true]; // An optional list of Subject Alternative name matchers. Envoy will verify that the // Subject Alternative Name of the presented certificate matches one of the specified matches. // // When a certificate has wildcard DNS SAN entries, to match a specific client, it should be // configured with exact match type in the :ref:`string matcher `. // For example if the certificate has "\*.example.com" as DNS SAN entry, to allow only "api.example.com", // it should be configured as shown below. // // .. code-block:: yaml // // match_subject_alt_names: // exact: "api.example.com" // // .. attention:: // // Subject Alternative Names are easily spoofable and verifying only them is insecure, // therefore this option must be used together with :ref:`trusted_ca // `. repeated type.matcher.StringMatcher match_subject_alt_names = 9; // [#not-implemented-hide:] Must present a signed time-stamped OCSP response. google.protobuf.BoolValue require_ocsp_staple = 5; // [#not-implemented-hide:] Must present signed certificate time-stamp. google.protobuf.BoolValue require_signed_certificate_timestamp = 6; // An optional `certificate revocation list // `_ // (in PEM format). If specified, Envoy will verify that the presented peer // certificate has not been revoked by this CRL. If this DataSource contains // multiple CRLs, all of them will be used. core.DataSource crl = 7; // If specified, Envoy will not reject expired certificates. bool allow_expired_certificate = 8; // Certificate trust chain verification mode. TrustChainVerification trust_chain_verification = 10 [(validate.rules).enum = {defined_only: true}]; }