// Copyright 2024 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.ai.generativelanguage.v1beta3; import "google/ai/generativelanguage/v1beta3/citation.proto"; import "google/ai/generativelanguage/v1beta3/safety.proto"; import "google/api/annotations.proto"; import "google/api/client.proto"; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; option go_package = "cloud.google.com/go/ai/generativelanguage/apiv1beta3/generativelanguagepb;generativelanguagepb"; option java_multiple_files = true; option java_outer_classname = "DiscussServiceProto"; option java_package = "com.google.ai.generativelanguage.v1beta3"; // An API for using Generative Language Models (GLMs) in dialog applications. // // Also known as large language models (LLMs), this API provides models that // are trained for multi-turn dialog. service DiscussService { option (google.api.default_host) = "generativelanguage.googleapis.com"; // Generates a response from the model given an input `MessagePrompt`. rpc GenerateMessage(GenerateMessageRequest) returns (GenerateMessageResponse) { option (google.api.http) = { post: "/v1beta3/{model=models/*}:generateMessage" body: "*" }; option (google.api.method_signature) = "model,prompt,temperature,candidate_count,top_p,top_k"; } // Runs a model's tokenizer on a string and returns the token count. rpc CountMessageTokens(CountMessageTokensRequest) returns (CountMessageTokensResponse) { option (google.api.http) = { post: "/v1beta3/{model=models/*}:countMessageTokens" body: "*" }; option (google.api.method_signature) = "model,prompt"; } } // Request to generate a message response from the model. message GenerateMessageRequest { // Required. The name of the model to use. // // Format: `name=models/{model}`. string model = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "generativelanguage.googleapis.com/Model" } ]; // Required. The structured textual input given to the model as a prompt. // // Given a // prompt, the model will return what it predicts is the next message in the // discussion. MessagePrompt prompt = 2 [(google.api.field_behavior) = REQUIRED]; // Optional. Controls the randomness of the output. // // Values can range over `[0.0,1.0]`, // inclusive. A value closer to `1.0` will produce responses that are more // varied, while a value closer to `0.0` will typically result in // less surprising responses from the model. optional float temperature = 3 [(google.api.field_behavior) = OPTIONAL]; // Optional. The number of generated response messages to return. // // This value must be between // `[1, 8]`, inclusive. If unset, this will default to `1`. optional int32 candidate_count = 4 [(google.api.field_behavior) = OPTIONAL]; // Optional. The maximum cumulative probability of tokens to consider when // sampling. // // The model uses combined Top-k and nucleus sampling. // // Nucleus sampling considers the smallest set of tokens whose probability // sum is at least `top_p`. optional float top_p = 5 [(google.api.field_behavior) = OPTIONAL]; // Optional. The maximum number of tokens to consider when sampling. // // The model uses combined Top-k and nucleus sampling. // // Top-k sampling considers the set of `top_k` most probable tokens. optional int32 top_k = 6 [(google.api.field_behavior) = OPTIONAL]; } // The response from the model. // // This includes candidate messages and // conversation history in the form of chronologically-ordered messages. message GenerateMessageResponse { // Candidate response messages from the model. repeated Message candidates = 1; // The conversation history used by the model. repeated Message messages = 2; // A set of content filtering metadata for the prompt and response // text. // // This indicates which `SafetyCategory`(s) blocked a // candidate from this response, the lowest `HarmProbability` // that triggered a block, and the HarmThreshold setting for that category. repeated ContentFilter filters = 3; } // The base unit of structured text. // // A `Message` includes an `author` and the `content` of // the `Message`. // // The `author` is used to tag messages when they are fed to the // model as text. message Message { // Optional. The author of this Message. // // This serves as a key for tagging // the content of this Message when it is fed to the model as text. // // The author can be any alphanumeric string. string author = 1 [(google.api.field_behavior) = OPTIONAL]; // Required. The text content of the structured `Message`. string content = 2 [(google.api.field_behavior) = REQUIRED]; // Output only. Citation information for model-generated `content` in this // `Message`. // // If this `Message` was generated as output from the model, this field may be // populated with attribution information for any text included in the // `content`. This field is used only on output. optional CitationMetadata citation_metadata = 3 [(google.api.field_behavior) = OUTPUT_ONLY]; } // All of the structured input text passed to the model as a prompt. // // A `MessagePrompt` contains a structured set of fields that provide context // for the conversation, examples of user input/model output message pairs that // prime the model to respond in different ways, and the conversation history // or list of messages representing the alternating turns of the conversation // between the user and the model. message MessagePrompt { // Optional. Text that should be provided to the model first to ground the // response. // // If not empty, this `context` will be given to the model first before the // `examples` and `messages`. When using a `context` be sure to provide it // with every request to maintain continuity. // // This field can be a description of your prompt to the model to help provide // context and guide the responses. Examples: "Translate the phrase from // English to French." or "Given a statement, classify the sentiment as happy, // sad or neutral." // // Anything included in this field will take precedence over message history // if the total input size exceeds the model's `input_token_limit` and the // input request is truncated. string context = 1 [(google.api.field_behavior) = OPTIONAL]; // Optional. Examples of what the model should generate. // // This includes both user input and the response that the model should // emulate. // // These `examples` are treated identically to conversation messages except // that they take precedence over the history in `messages`: // If the total input size exceeds the model's `input_token_limit` the input // will be truncated. Items will be dropped from `messages` before `examples`. repeated Example examples = 2 [(google.api.field_behavior) = OPTIONAL]; // Required. A snapshot of the recent conversation history sorted // chronologically. // // Turns alternate between two authors. // // If the total input size exceeds the model's `input_token_limit` the input // will be truncated: The oldest items will be dropped from `messages`. repeated Message messages = 3 [(google.api.field_behavior) = REQUIRED]; } // An input/output example used to instruct the Model. // // It demonstrates how the model should respond or format its response. message Example { // Required. An example of an input `Message` from the user. Message input = 1 [(google.api.field_behavior) = REQUIRED]; // Required. An example of what the model should output given the input. Message output = 2 [(google.api.field_behavior) = REQUIRED]; } // Counts the number of tokens in the `prompt` sent to a model. // // Models may tokenize text differently, so each model may return a different // `token_count`. message CountMessageTokensRequest { // Required. The model's resource name. This serves as an ID for the Model to // use. // // This name should match a model name returned by the `ListModels` method. // // Format: `models/{model}` string model = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "generativelanguage.googleapis.com/Model" } ]; // Required. The prompt, whose token count is to be returned. MessagePrompt prompt = 2 [(google.api.field_behavior) = REQUIRED]; } // A response from `CountMessageTokens`. // // It returns the model's `token_count` for the `prompt`. message CountMessageTokensResponse { // The number of tokens that the `model` tokenizes the `prompt` into. // // Always non-negative. int32 token_count = 1; }