// Copyright 2024 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.aiplatform.v1; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; import "google/cloud/aiplatform/v1/encryption_spec.proto"; import "google/cloud/aiplatform/v1/job_state.proto"; import "google/protobuf/struct.proto"; import "google/protobuf/timestamp.proto"; import "google/rpc/status.proto"; import "google/type/money.proto"; option csharp_namespace = "Google.Cloud.AIPlatform.V1"; option go_package = "cloud.google.com/go/aiplatform/apiv1/aiplatformpb;aiplatformpb"; option java_multiple_files = true; option java_outer_classname = "DataLabelingJobProto"; option java_package = "com.google.cloud.aiplatform.v1"; option php_namespace = "Google\\Cloud\\AIPlatform\\V1"; option ruby_package = "Google::Cloud::AIPlatform::V1"; // DataLabelingJob is used to trigger a human labeling job on unlabeled data // from the following Dataset: message DataLabelingJob { option (google.api.resource) = { type: "aiplatform.googleapis.com/DataLabelingJob" pattern: "projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}" }; // Output only. Resource name of the DataLabelingJob. string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Required. The user-defined name of the DataLabelingJob. // The name can be up to 128 characters long and can consist of any UTF-8 // characters. // Display name of a DataLabelingJob. string display_name = 2 [(google.api.field_behavior) = REQUIRED]; // Required. Dataset resource names. Right now we only support labeling from a // single Dataset. Format: // `projects/{project}/locations/{location}/datasets/{dataset}` repeated string datasets = 3 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "aiplatform.googleapis.com/Dataset" } ]; // Labels to assign to annotations generated by this DataLabelingJob. // // Label keys and values can be no longer than 64 characters // (Unicode codepoints), can only contain lowercase letters, numeric // characters, underscores and dashes. International characters are allowed. // See https://goo.gl/xmQnxf for more information and examples of labels. // System reserved label keys are prefixed with "aiplatform.googleapis.com/" // and are immutable. map annotation_labels = 12; // Required. Number of labelers to work on each DataItem. int32 labeler_count = 4 [(google.api.field_behavior) = REQUIRED]; // Required. The Google Cloud Storage location of the instruction pdf. This // pdf is shared with labelers, and provides detailed description on how to // label DataItems in Datasets. string instruction_uri = 5 [(google.api.field_behavior) = REQUIRED]; // Required. Points to a YAML file stored on Google Cloud Storage describing // the config for a specific type of DataLabelingJob. The schema files that // can be used here are found in the // https://storage.googleapis.com/google-cloud-aiplatform bucket in the // /schema/datalabelingjob/inputs/ folder. string inputs_schema_uri = 6 [(google.api.field_behavior) = REQUIRED]; // Required. Input config parameters for the DataLabelingJob. google.protobuf.Value inputs = 7 [(google.api.field_behavior) = REQUIRED]; // Output only. The detailed state of the job. JobState state = 8 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Current labeling job progress percentage scaled in interval // [0, 100], indicating the percentage of DataItems that has been finished. int32 labeling_progress = 13 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Estimated cost(in US dollars) that the DataLabelingJob has // incurred to date. google.type.Money current_spend = 14 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Timestamp when this DataLabelingJob was created. google.protobuf.Timestamp create_time = 9 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Timestamp when this DataLabelingJob was updated most recently. google.protobuf.Timestamp update_time = 10 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. DataLabelingJob errors. It is only populated when job's state // is `JOB_STATE_FAILED` or `JOB_STATE_CANCELLED`. google.rpc.Status error = 22 [(google.api.field_behavior) = OUTPUT_ONLY]; // The labels with user-defined metadata to organize your DataLabelingJobs. // // Label keys and values can be no longer than 64 characters // (Unicode codepoints), can only contain lowercase letters, numeric // characters, underscores and dashes. International characters are allowed. // // See https://goo.gl/xmQnxf for more information and examples of labels. // System reserved label keys are prefixed with "aiplatform.googleapis.com/" // and are immutable. Following system labels exist for each DataLabelingJob: // // * "aiplatform.googleapis.com/schema": output only, its value is the // [inputs_schema][google.cloud.aiplatform.v1.DataLabelingJob.inputs_schema_uri]'s // title. map labels = 11; // The SpecialistPools' resource names associated with this job. repeated string specialist_pools = 16; // Customer-managed encryption key spec for a DataLabelingJob. If set, this // DataLabelingJob will be secured by this key. // // Note: Annotations created in the DataLabelingJob are associated with // the EncryptionSpec of the Dataset they are exported to. EncryptionSpec encryption_spec = 20; // Parameters that configure the active learning pipeline. Active learning // will label the data incrementally via several iterations. For every // iteration, it will select a batch of data based on the sampling strategy. ActiveLearningConfig active_learning_config = 21; } // Parameters that configure the active learning pipeline. Active learning will // label the data incrementally by several iterations. For every iteration, it // will select a batch of data based on the sampling strategy. message ActiveLearningConfig { // Required. Max human labeling DataItems. The rest part will be labeled by // machine. oneof human_labeling_budget { // Max number of human labeled DataItems. int64 max_data_item_count = 1; // Max percent of total DataItems for human labeling. int32 max_data_item_percentage = 2; } // Active learning data sampling config. For every active learning labeling // iteration, it will select a batch of data based on the sampling strategy. SampleConfig sample_config = 3; // CMLE training config. For every active learning labeling iteration, system // will train a machine learning model on CMLE. The trained model will be used // by data sampling algorithm to select DataItems. TrainingConfig training_config = 4; } // Active learning data sampling config. For every active learning labeling // iteration, it will select a batch of data based on the sampling strategy. message SampleConfig { // Sample strategy decides which subset of DataItems should be selected for // human labeling in every batch. enum SampleStrategy { // Default will be treated as UNCERTAINTY. SAMPLE_STRATEGY_UNSPECIFIED = 0; // Sample the most uncertain data to label. UNCERTAINTY = 1; } // Decides sample size for the initial batch. initial_batch_sample_percentage // is used by default. oneof initial_batch_sample_size { // The percentage of data needed to be labeled in the first batch. int32 initial_batch_sample_percentage = 1; } // Decides sample size for the following batches. // following_batch_sample_percentage is used by default. oneof following_batch_sample_size { // The percentage of data needed to be labeled in each following batch // (except the first batch). int32 following_batch_sample_percentage = 3; } // Field to choose sampling strategy. Sampling strategy will decide which data // should be selected for human labeling in every batch. SampleStrategy sample_strategy = 5; } // CMLE training config. For every active learning labeling iteration, system // will train a machine learning model on CMLE. The trained model will be used // by data sampling algorithm to select DataItems. message TrainingConfig { // The timeout hours for the CMLE training job, expressed in milli hours // i.e. 1,000 value in this field means 1 hour. int64 timeout_training_milli_hours = 1; }