// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
syntax = "proto3";
package google.cloud.datalabeling.v1beta1;
import "google/api/resource.proto";
import "google/cloud/datalabeling/v1beta1/dataset.proto";
import "google/cloud/datalabeling/v1beta1/evaluation.proto";
import "google/cloud/datalabeling/v1beta1/human_annotation_config.proto";
import "google/protobuf/timestamp.proto";
import "google/rpc/status.proto";
option csharp_namespace = "Google.Cloud.DataLabeling.V1Beta1";
option go_package = "cloud.google.com/go/datalabeling/apiv1beta1/datalabelingpb;datalabelingpb";
option java_multiple_files = true;
option java_package = "com.google.cloud.datalabeling.v1beta1";
option php_namespace = "Google\\Cloud\\DataLabeling\\V1beta1";
option ruby_package = "Google::Cloud::DataLabeling::V1beta1";
// Defines an evaluation job that runs periodically to generate
// [Evaluations][google.cloud.datalabeling.v1beta1.Evaluation]. [Creating an evaluation
// job](/ml-engine/docs/continuous-evaluation/create-job) is the starting point
// for using continuous evaluation.
message EvaluationJob {
option (google.api.resource) = {
type: "datalabeling.googleapis.com/EvaluationJob"
pattern: "projects/{project}/evaluationJobs/{evaluation_job}"
};
// State of the job.
enum State {
STATE_UNSPECIFIED = 0;
// The job is scheduled to run at the [configured interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. You
// can [pause][google.cloud.datalabeling.v1beta1.DataLabelingService.PauseEvaluationJob] or
// [delete][google.cloud.datalabeling.v1beta1.DataLabelingService.DeleteEvaluationJob] the job.
//
// When the job is in this state, it samples prediction input and output
// from your model version into your BigQuery table as predictions occur.
SCHEDULED = 1;
// The job is currently running. When the job runs, Data Labeling Service
// does several things:
//
// 1. If you have configured your job to use Data Labeling Service for
// ground truth labeling, the service creates a
// [Dataset][google.cloud.datalabeling.v1beta1.Dataset] and a labeling task for all data sampled
// since the last time the job ran. Human labelers provide ground truth
// labels for your data. Human labeling may take hours, or even days,
// depending on how much data has been sampled. The job remains in the
// `RUNNING` state during this time, and it can even be running multiple
// times in parallel if it gets triggered again (for example 24 hours
// later) before the earlier run has completed. When human labelers have
// finished labeling the data, the next step occurs.
//
// If you have configured your job to provide your own ground truth
// labels, Data Labeling Service still creates a [Dataset][google.cloud.datalabeling.v1beta1.Dataset] for newly
// sampled data, but it expects that you have already added ground truth
// labels to the BigQuery table by this time. The next step occurs
// immediately.
//
// 2. Data Labeling Service creates an [Evaluation][google.cloud.datalabeling.v1beta1.Evaluation] by comparing your
// model version's predictions with the ground truth labels.
//
// If the job remains in this state for a long time, it continues to sample
// prediction data into your BigQuery table and will run again at the next
// interval, even if it causes the job to run multiple times in parallel.
RUNNING = 2;
// The job is not sampling prediction input and output into your BigQuery
// table and it will not run according to its schedule. You can
// [resume][google.cloud.datalabeling.v1beta1.DataLabelingService.ResumeEvaluationJob] the job.
PAUSED = 3;
// The job has this state right before it is deleted.
STOPPED = 4;
}
// Output only. After you create a job, Data Labeling Service assigns a name
// to the job with the following format:
//
// "projects/{project_id}/evaluationJobs/{evaluation_job_id}"
string name = 1;
// Required. Description of the job. The description can be up to 25,000
// characters long.
string description = 2;
// Output only. Describes the current state of the job.
State state = 3;
// Required. Describes the interval at which the job runs. This interval must
// be at least 1 day, and it is rounded to the nearest day. For example, if
// you specify a 50-hour interval, the job runs every 2 days.
//
// You can provide the schedule in
// [crontab format](/scheduler/docs/configuring/cron-job-schedules) or in an
// [English-like
// format](/appengine/docs/standard/python/config/cronref#schedule_format).
//
// Regardless of what you specify, the job will run at 10:00 AM UTC. Only the
// interval from this schedule is used, not the specific time of day.
string schedule = 4;
// Required. The [AI Platform Prediction model
// version](/ml-engine/docs/prediction-overview) to be evaluated. Prediction
// input and output is sampled from this model version. When creating an
// evaluation job, specify the model version in the following format:
//
// "projects/{project_id}/models/{model_name}/versions/{version_name}"
//
// There can only be one evaluation job per model version.
string model_version = 5;
// Required. Configuration details for the evaluation job.
EvaluationJobConfig evaluation_job_config = 6;
// Required. Name of the [AnnotationSpecSet][google.cloud.datalabeling.v1beta1.AnnotationSpecSet] describing all the
// labels that your machine learning model outputs. You must create this
// resource before you create an evaluation job and provide its name in the
// following format:
//
// "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}"
string annotation_spec_set = 7;
// Required. Whether you want Data Labeling Service to provide ground truth
// labels for prediction input. If you want the service to assign human
// labelers to annotate your data, set this to `true`. If you want to provide
// your own ground truth labels in the evaluation job's BigQuery table, set
// this to `false`.
bool label_missing_ground_truth = 8;
// Output only. Every time the evaluation job runs and an error occurs, the
// failed attempt is appended to this array.
repeated Attempt attempts = 9;
// Output only. Timestamp of when this evaluation job was created.
google.protobuf.Timestamp create_time = 10;
}
// Configures specific details of how a continuous evaluation job works. Provide
// this configuration when you create an EvaluationJob.
message EvaluationJobConfig {
// Required. Details for how you want human reviewers to provide ground truth
// labels.
oneof human_annotation_request_config {
// Specify this field if your model version performs image classification or
// general classification.
//
// `annotationSpecSet` in this configuration must match
// [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
// `allowMultiLabel` in this configuration must match
// `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
ImageClassificationConfig image_classification_config = 4;
// Specify this field if your model version performs image object detection
// (bounding box detection).
//
// `annotationSpecSet` in this configuration must match
// [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
BoundingPolyConfig bounding_poly_config = 5;
// Specify this field if your model version performs text classification.
//
// `annotationSpecSet` in this configuration must match
// [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].
// `allowMultiLabel` in this configuration must match
// `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].
TextClassificationConfig text_classification_config = 8;
}
// Rquired. Details for the sampled prediction input. Within this
// configuration, there are requirements for several fields:
//
// * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`.
// * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`,
// `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`,
// or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection).
// * If your machine learning model performs classification, you must specify
// `classificationMetadata.isMultiLabel`.
// * You must specify `bigquerySource` (not `gcsSource`).
InputConfig input_config = 1;
// Required. Details for calculating evaluation metrics and creating
// [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object
// detection, you must specify the `boundingBoxEvaluationOptions` field within
// this configuration. Otherwise, provide an empty object for this
// configuration.
EvaluationConfig evaluation_config = 2;
// Optional. Details for human annotation of your data. If you set
// [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
// `true` for this evaluation job, then you must specify this field. If you
// plan to provide your own ground truth labels, then omit this field.
//
// Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can
// specify this field. Provide the name of the instruction resource in the
// `instruction` field within this configuration.
HumanAnnotationConfig human_annotation_config = 3;
// Required. Prediction keys that tell Data Labeling Service where to find the
// data for evaluation in your BigQuery table. When the service samples
// prediction input and output from your model version and saves it to
// BigQuery, the data gets stored as JSON strings in the BigQuery table. These
// keys tell Data Labeling Service how to parse the JSON.
//
// You can provide the following entries in this field:
//
// * `data_json_key`: the data key for prediction input. You must provide
// either this key or `reference_json_key`.
// * `reference_json_key`: the data reference key for prediction input. You
// must provide either this key or `data_json_key`.
// * `label_json_key`: the label key for prediction output. Required.
// * `label_score_json_key`: the score key for prediction output. Required.
// * `bounding_box_json_key`: the bounding box key for prediction output.
// Required if your model version perform image object detection.
//
// Learn [how to configure prediction
// keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys).
map bigquery_import_keys = 9;
// Required. The maximum number of predictions to sample and save to BigQuery
// during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit
// overrides `example_sample_percentage`: even if the service has not sampled
// enough predictions to fulfill `example_sample_perecentage` during an
// interval, it stops sampling predictions when it meets this limit.
int32 example_count = 10;
// Required. Fraction of predictions to sample and save to BigQuery during
// each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means
// 10% of predictions served by your model version get saved to BigQuery.
double example_sample_percentage = 11;
// Optional. Configuration details for evaluation job alerts. Specify this
// field if you want to receive email alerts if the evaluation job finds that
// your predictions have low mean average precision during a run.
EvaluationJobAlertConfig evaluation_job_alert_config = 13;
}
// Provides details for how an evaluation job sends email alerts based on the
// results of a run.
message EvaluationJobAlertConfig {
// Required. An email address to send alerts to.
string email = 1;
// Required. A number between 0 and 1 that describes a minimum mean average
// precision threshold. When the evaluation job runs, if it calculates that
// your model version's predictions from the recent interval have
// [meanAveragePrecision][google.cloud.datalabeling.v1beta1.PrCurve.mean_average_precision] below this
// threshold, then it sends an alert to your specified email.
double min_acceptable_mean_average_precision = 2;
}
// Records a failed evaluation job run.
message Attempt {
google.protobuf.Timestamp attempt_time = 1;
// Details of errors that occurred.
repeated google.rpc.Status partial_failures = 2;
}