
CMSC858 Project 1 Report

Alperen Keles

March 2022



Introduction

In this project, I implemented a BitVector implementation, used it for implementing Rank & Select data structures,
which are very useful succint data structures for indexing and querying large amounts of data efficiently. I then
implemented an efficient generic Sparse Array using these primitives.

Website

Github and crates.io page of the project can be found below.
Github: https://github.com/alpaylan/bvrs
Crates.io: https://crates.io/crates/bvrs/0.1.0

Difficulties

I had a set of problems.

• Rust induced problems(no existing good bitvector library, problems migrating from rank/select classes to
sparse array because of interface differences).

• Abstraction induced problems(Theoretical bounds are great, but they are abstract. Moving down to the code
level creates practical challenges on them, so if I were to reimplement this library I wouldn’t really stuck with
the theoretical bounds, rather move to a more relaxed frame where I still have the asymptotical guarantees ).

Results

This sections has the results and their short discussions.
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Rank Structure Generation(Time)

Graph

Figure 1: BitVector Size vs Rank Data Structure Generation Time Graph

Discussion

This graphic is linearly growing as expected. Generation of superblock/blocks and lookup tables take linear time
with respect to the size of the bitvector.
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Rank Structure Generation(Size)

Graph

Figure 2: BitVector Size vs Generated Rank Data Structure Size Graph

Discussion

Size of rank data structure follows a o(N) pattern as we theoretically expected. For small values of N , fixed overhead
might be too much because as opposed to theoretical data structures Rust structs carry metadata, but as we go
forward with larger values of N , we see structure starts to take less and less space compared to the bitvector size.
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Bitvec Size vs Rank1 Time

Graph

Figure 3: BitVector Size vs Time for 1000 Rank1 Queries Graph

Discussion

This graphic shows our rank1 operation is indeed almost constant, is depends very little, and that’s due to the
implementation of BitVector Extraction function, which if I tried to write efficiently would be out of scope of
this homework, and I knew the size would be bounded hence theoretical constant bounds are not broken.
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Bitvec Size vs RankN Time

Graph

Figure 4: BitVector Size vs Time for 1000 RankN Queries Graph

Discussion

This is the graph of linear time rank operation. It was used as a baseline, ground truth for tests, and also used in
the generation of the lookup table. It grows linearly as expected.
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Bitvec Size vs Select1 Time

Graph

Figure 5: BitVector Size vs Time for 1000 Select1 Queries Graph

Discussion

This graphic shows our select1 operation is indeed logarithmic. It grows fast at the beginning, yet increase in the
time slows down after we reach around 10000 bits.
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Sparse Array Generation(Time)

Graph

Figure 6: Sparse Array Size/Sparsity vs Time to Generation Graph

Discussion

This is the graphic showing how different size/sparsity levels affect generation of a Sparse Array. Affect of size is
as expected, linear. Sparsity could be a more surprising result, but this is due to dynamic nature of sparse arrays.
Each append operation requires the index to be computed again, which means it takes more time to build the index
simply when we do it more times.
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Sparse Array Generation(Size)[Theoretical Discussion/Not Implemented]

This is very much implementation dependent, so I will first lay out my assumptions.
– Naive implementation will use a null pointer based schema rather than a tagged union for empty spaces, as the
second one takes much more space, this still fits to our purposes.
– A pointer takes 64 bits/8 bytes space.
Then comes our conclusions.
1. One can easily see that both implementations take the same space for present elements, as they naively store
them. Our bitvector based implementation will probably be better as it holds a continous vector rather than sepa-
rate elements reached via pointers due to spacial locality.
2. Then, we are left with comparing the size of pointer array(64 ∗ size) vs the bitvector(size) bits plus the rank
data structure(o(size)). Which means our implementation is at worst 32 times memory efficient, depending on the
o(size) factor.
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Sparse Array Rank(Time)

Graph

Figure 7: Sparse Array Size/Sparsity vs Time for 1000 Rank Queries Graph

Discussion

For this function, I rely on random access over the vector. Hence, it’s so low(on the order of picoseconds) on time.
I believe the fluctuations are due to me using my computer, while holding the experiments.
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Sparse Array Index(Time)

Graphic

Figure 8: Caption

Figure 9: Sparse Array Size/Sparsity vs Time for 1000 Index Queries Graph

Discussion

For this function, I rely on the rank function of rank support structure. I believe that the fluctuations are again
to due me using my computer while holding the experiments and also the order being very low again(microseconds)
so it’s easily disturbed. Yet, we see a significant impact from sparsity, this is due to empty accesses. For empty
position accesses, we don’t need to do any query, which as I mentioned very close to constant yet not really constant
due to extract function.
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