extern crate bytes; use bytes::{Bytes, BytesMut, BufMut, IntoBuf}; const LONG: &'static [u8] = b"mary had a little lamb, little lamb, little lamb"; const SHORT: &'static [u8] = b"hello world"; fn inline_cap() -> usize { use std::mem; 4 * mem::size_of::() - 1 } fn is_sync() {} fn is_send() {} #[test] fn test_bounds() { is_sync::(); is_sync::(); is_send::(); is_send::(); } #[test] fn from_slice() { let a = Bytes::from(&b"abcdefgh"[..]); assert_eq!(a, b"abcdefgh"[..]); assert_eq!(a, &b"abcdefgh"[..]); assert_eq!(a, Vec::from(&b"abcdefgh"[..])); assert_eq!(b"abcdefgh"[..], a); assert_eq!(&b"abcdefgh"[..], a); assert_eq!(Vec::from(&b"abcdefgh"[..]), a); let a = BytesMut::from(&b"abcdefgh"[..]); assert_eq!(a, b"abcdefgh"[..]); assert_eq!(a, &b"abcdefgh"[..]); assert_eq!(a, Vec::from(&b"abcdefgh"[..])); assert_eq!(b"abcdefgh"[..], a); assert_eq!(&b"abcdefgh"[..], a); assert_eq!(Vec::from(&b"abcdefgh"[..]), a); } #[test] fn fmt() { let a = format!("{:?}", Bytes::from(&b"abcdefg"[..])); let b = "b\"abcdefg\""; assert_eq!(a, b); let a = format!("{:?}", BytesMut::from(&b"abcdefg"[..])); assert_eq!(a, b); } #[test] fn fmt_write() { use std::fmt::Write; use std::iter::FromIterator; let s = String::from_iter((0..10).map(|_| "abcdefg")); let mut a = BytesMut::with_capacity(64); write!(a, "{}", &s[..64]).unwrap(); assert_eq!(a, s[..64].as_bytes()); let mut b = BytesMut::with_capacity(64); write!(b, "{}", &s[..32]).unwrap(); write!(b, "{}", &s[32..64]).unwrap(); assert_eq!(b, s[..64].as_bytes()); let mut c = BytesMut::with_capacity(64); write!(c, "{}", s).unwrap_err(); assert!(c.is_empty()); } #[test] fn len() { let a = Bytes::from(&b"abcdefg"[..]); assert_eq!(a.len(), 7); let a = BytesMut::from(&b"abcdefg"[..]); assert_eq!(a.len(), 7); let a = Bytes::from(&b""[..]); assert!(a.is_empty()); let a = BytesMut::from(&b""[..]); assert!(a.is_empty()); } #[test] fn index() { let a = Bytes::from(&b"hello world"[..]); assert_eq!(a[0..5], *b"hello"); } #[test] fn slice() { let a = Bytes::from(&b"hello world"[..]); let b = a.slice(3, 5); assert_eq!(b, b"lo"[..]); let b = a.slice(0, 0); assert_eq!(b, b""[..]); let b = a.slice(3, 3); assert_eq!(b, b""[..]); let b = a.slice(a.len(), a.len()); assert_eq!(b, b""[..]); let b = a.slice_to(5); assert_eq!(b, b"hello"[..]); let b = a.slice_from(3); assert_eq!(b, b"lo world"[..]); } #[test] #[should_panic] fn slice_oob_1() { let a = Bytes::from(&b"hello world"[..]); a.slice(5, inline_cap() + 1); } #[test] #[should_panic] fn slice_oob_2() { let a = Bytes::from(&b"hello world"[..]); a.slice(inline_cap() + 1, inline_cap() + 5); } #[test] fn split_off() { let mut hello = Bytes::from(&b"helloworld"[..]); let world = hello.split_off(5); assert_eq!(hello, &b"hello"[..]); assert_eq!(world, &b"world"[..]); let mut hello = BytesMut::from(&b"helloworld"[..]); let world = hello.split_off(5); assert_eq!(hello, &b"hello"[..]); assert_eq!(world, &b"world"[..]); } #[test] #[should_panic] fn split_off_oob() { let mut hello = Bytes::from(&b"helloworld"[..]); hello.split_off(inline_cap() + 1); } #[test] fn split_off_uninitialized() { let mut bytes = BytesMut::with_capacity(1024); let other = bytes.split_off(128); assert_eq!(bytes.len(), 0); assert_eq!(bytes.capacity(), 128); assert_eq!(other.len(), 0); assert_eq!(other.capacity(), 896); } #[test] fn split_off_to_loop() { let s = b"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; for i in 0..(s.len() + 1) { { let mut bytes = Bytes::from(&s[..]); let off = bytes.split_off(i); assert_eq!(i, bytes.len()); let mut sum = Vec::new(); sum.extend(&bytes); sum.extend(&off); assert_eq!(&s[..], &sum[..]); } { let mut bytes = BytesMut::from(&s[..]); let off = bytes.split_off(i); assert_eq!(i, bytes.len()); let mut sum = Vec::new(); sum.extend(&bytes); sum.extend(&off); assert_eq!(&s[..], &sum[..]); } { let mut bytes = Bytes::from(&s[..]); let off = bytes.split_to(i); assert_eq!(i, off.len()); let mut sum = Vec::new(); sum.extend(&off); sum.extend(&bytes); assert_eq!(&s[..], &sum[..]); } { let mut bytes = BytesMut::from(&s[..]); let off = bytes.split_to(i); assert_eq!(i, off.len()); let mut sum = Vec::new(); sum.extend(&off); sum.extend(&bytes); assert_eq!(&s[..], &sum[..]); } } } #[test] fn split_to_1() { // Inline let mut a = Bytes::from(SHORT); let b = a.split_to(4); assert_eq!(SHORT[4..], a); assert_eq!(SHORT[..4], b); // Allocated let mut a = Bytes::from(LONG); let b = a.split_to(4); assert_eq!(LONG[4..], a); assert_eq!(LONG[..4], b); let mut a = Bytes::from(LONG); let b = a.split_to(30); assert_eq!(LONG[30..], a); assert_eq!(LONG[..30], b); } #[test] fn split_to_2() { let mut a = Bytes::from(LONG); assert_eq!(LONG, a); let b = a.split_to(1); assert_eq!(LONG[1..], a); drop(b); } #[test] #[should_panic] fn split_to_oob() { let mut hello = Bytes::from(&b"helloworld"[..]); hello.split_to(inline_cap() + 1); } #[test] #[should_panic] fn split_to_oob_mut() { let mut hello = BytesMut::from(&b"helloworld"[..]); hello.split_to(inline_cap() + 1); } #[test] #[should_panic] fn split_to_uninitialized() { let mut bytes = BytesMut::with_capacity(1024); let _other = bytes.split_to(128); } #[test] fn split_off_to_at_gt_len() { fn make_bytes() -> Bytes { let mut bytes = BytesMut::with_capacity(100); bytes.put_slice(&[10, 20, 30, 40]); bytes.freeze() } use std::panic; make_bytes().split_to(4); make_bytes().split_off(4); assert!(panic::catch_unwind(move || { make_bytes().split_to(5); }).is_err()); assert!(panic::catch_unwind(move || { make_bytes().split_off(5); }).is_err()); } #[test] fn fns_defined_for_bytes_mut() { let mut bytes = BytesMut::from(&b"hello world"[..]); bytes.as_ptr(); bytes.as_mut_ptr(); // Iterator let v: Vec = bytes.iter().map(|b| *b).collect(); assert_eq!(&v[..], bytes); } #[test] fn mut_into_buf() { let mut v = vec![0, 0, 0, 0]; let s = &mut v[..]; s.into_buf().put_u32_le(42); } #[test] fn reserve_convert() { // Inline -> Vec let mut bytes = BytesMut::with_capacity(8); bytes.put("hello"); bytes.reserve(40); assert_eq!(bytes.capacity(), 45); assert_eq!(bytes, "hello"); // Inline -> Inline let mut bytes = BytesMut::with_capacity(inline_cap()); bytes.put("abcdefghijkl"); let a = bytes.split_to(10); bytes.reserve(inline_cap() - 3); assert_eq!(inline_cap(), bytes.capacity()); assert_eq!(bytes, "kl"); assert_eq!(a, "abcdefghij"); // Vec -> Vec let mut bytes = BytesMut::from(LONG); bytes.reserve(64); assert_eq!(bytes.capacity(), LONG.len() + 64); // Arc -> Vec let mut bytes = BytesMut::from(LONG); let a = bytes.split_to(30); bytes.reserve(128); assert!(bytes.capacity() >= bytes.len() + 128); drop(a); } #[test] fn reserve_growth() { let mut bytes = BytesMut::with_capacity(64); bytes.put("hello world"); let _ = bytes.take(); bytes.reserve(65); assert_eq!(bytes.capacity(), 128); } #[test] fn reserve_allocates_at_least_original_capacity() { let mut bytes = BytesMut::with_capacity(1024); for i in 0..1020 { bytes.put(i as u8); } let _other = bytes.take(); bytes.reserve(16); assert_eq!(bytes.capacity(), 1024); } #[test] fn reserve_max_original_capacity_value() { const SIZE: usize = 128 * 1024; let mut bytes = BytesMut::with_capacity(SIZE); for _ in 0..SIZE { bytes.put(0u8); } let _other = bytes.take(); bytes.reserve(16); assert_eq!(bytes.capacity(), 64 * 1024); } // Without either looking at the internals of the BytesMut or doing weird stuff // with the memory allocator, there's no good way to automatically verify from // within the program that this actually recycles memory. Instead, just exercise // the code path to ensure that the results are correct. #[test] fn reserve_vec_recycling() { let mut bytes = BytesMut::from(Vec::with_capacity(16)); assert_eq!(bytes.capacity(), 16); bytes.put("0123456789012345"); bytes.advance(10); assert_eq!(bytes.capacity(), 6); bytes.reserve(8); assert_eq!(bytes.capacity(), 16); } #[test] fn reserve_in_arc_unique_does_not_overallocate() { let mut bytes = BytesMut::with_capacity(1000); bytes.take(); // now bytes is Arc and refcount == 1 assert_eq!(1000, bytes.capacity()); bytes.reserve(2001); assert_eq!(2001, bytes.capacity()); } #[test] fn reserve_in_arc_unique_doubles() { let mut bytes = BytesMut::with_capacity(1000); bytes.take(); // now bytes is Arc and refcount == 1 assert_eq!(1000, bytes.capacity()); bytes.reserve(1001); assert_eq!(2000, bytes.capacity()); } #[test] fn reserve_in_arc_nonunique_does_not_overallocate() { let mut bytes = BytesMut::with_capacity(1000); let _copy = bytes.take(); // now bytes is Arc and refcount == 2 assert_eq!(1000, bytes.capacity()); bytes.reserve(2001); assert_eq!(2001, bytes.capacity()); } #[test] fn inline_storage() { let mut bytes = BytesMut::with_capacity(inline_cap()); let zero = [0u8; 64]; bytes.put(&zero[0..inline_cap()]); assert_eq!(*bytes, zero[0..inline_cap()]); } #[test] fn extend_mut() { let mut bytes = BytesMut::with_capacity(0); bytes.extend(LONG); assert_eq!(*bytes, LONG[..]); } #[test] fn extend_shr() { let mut bytes = Bytes::new(); bytes.extend(LONG); assert_eq!(*bytes, LONG[..]); } #[test] fn extend_from_slice_mut() { for &i in &[3, 34] { let mut bytes = BytesMut::new(); bytes.extend_from_slice(&LONG[..i]); bytes.extend_from_slice(&LONG[i..]); assert_eq!(LONG[..], *bytes); } } #[test] fn extend_from_slice_shr() { for &i in &[3, 34] { let mut bytes = Bytes::new(); bytes.extend_from_slice(&LONG[..i]); bytes.extend_from_slice(&LONG[i..]); assert_eq!(LONG[..], *bytes); } } #[test] fn from_static() { let mut a = Bytes::from_static(b"ab"); let b = a.split_off(1); assert_eq!(a, b"a"[..]); assert_eq!(b, b"b"[..]); } #[test] fn advance_inline() { let mut a = Bytes::from(&b"hello world"[..]); a.advance(6); assert_eq!(a, &b"world"[..]); } #[test] fn advance_static() { let mut a = Bytes::from_static(b"hello world"); a.advance(6); assert_eq!(a, &b"world"[..]); } #[test] fn advance_vec() { let mut a = BytesMut::from(b"hello world boooo yah world zomg wat wat".to_vec()); a.advance(16); assert_eq!(a, b"o yah world zomg wat wat"[..]); a.advance(4); assert_eq!(a, b"h world zomg wat wat"[..]); // Reserve some space. a.reserve(1024); assert_eq!(a, b"h world zomg wat wat"[..]); a.advance(6); assert_eq!(a, b"d zomg wat wat"[..]); } #[test] #[should_panic] fn advance_past_len() { let mut a = BytesMut::from(b"hello world".to_vec()); a.advance(20); } #[test] // Only run these tests on little endian systems. CI uses qemu for testing // little endian... and qemu doesn't really support threading all that well. #[cfg(target_endian = "little")] fn stress() { // Tests promoting a buffer from a vec -> shared in a concurrent situation use std::sync::{Arc, Barrier}; use std::thread; const THREADS: usize = 8; const ITERS: usize = 1_000; for i in 0..ITERS { let data = [i as u8; 256]; let buf = Arc::new(Bytes::from(&data[..])); let barrier = Arc::new(Barrier::new(THREADS)); let mut joins = Vec::with_capacity(THREADS); for _ in 0..THREADS { let c = barrier.clone(); let buf = buf.clone(); joins.push(thread::spawn(move || { c.wait(); let buf: Bytes = (*buf).clone(); drop(buf); })); } for th in joins { th.join().unwrap(); } assert_eq!(*buf, data[..]); } } #[test] fn partial_eq_bytesmut() { let bytes = Bytes::from(&b"The quick red fox"[..]); let bytesmut = BytesMut::from(&b"The quick red fox"[..]); assert!(bytes == bytesmut); assert!(bytesmut == bytes); let bytes2 = Bytes::from(&b"Jumped over the lazy brown dog"[..]); assert!(bytes2 != bytesmut); assert!(bytesmut != bytes2); } #[test] fn unsplit_basic() { let mut buf = BytesMut::with_capacity(64); buf.extend_from_slice(b"aaabbbcccddd"); let splitted = buf.split_off(6); assert_eq!(b"aaabbb", &buf[..]); assert_eq!(b"cccddd", &splitted[..]); buf.unsplit(splitted); assert_eq!(b"aaabbbcccddd", &buf[..]); } #[test] fn unsplit_empty_other() { let mut buf = BytesMut::with_capacity(64); buf.extend_from_slice(b"aaabbbcccddd"); // empty other let other = BytesMut::new(); buf.unsplit(other); assert_eq!(b"aaabbbcccddd", &buf[..]); } #[test] fn unsplit_empty_self() { // empty self let mut buf = BytesMut::new(); let mut other = BytesMut::with_capacity(64); other.extend_from_slice(b"aaabbbcccddd"); buf.unsplit(other); assert_eq!(b"aaabbbcccddd", &buf[..]); } #[test] fn unsplit_inline_arc() { let mut buf = BytesMut::with_capacity(8); //inline buf.extend_from_slice(b"aaaabbbb"); let mut buf2 = BytesMut::with_capacity(64); buf2.extend_from_slice(b"ccccddddeeee"); buf2.split_off(8); //arc buf.unsplit(buf2); assert_eq!(b"aaaabbbbccccdddd", &buf[..]); } #[test] fn unsplit_arc_inline() { let mut buf = BytesMut::with_capacity(64); buf.extend_from_slice(b"aaaabbbbeeee"); buf.split_off(8); //arc let mut buf2 = BytesMut::with_capacity(8); //inline buf2.extend_from_slice(b"ccccdddd"); buf.unsplit(buf2); assert_eq!(b"aaaabbbbccccdddd", &buf[..]); } #[test] fn unsplit_both_inline() { let mut buf = BytesMut::with_capacity(16); //inline buf.extend_from_slice(b"aaaabbbbccccdddd"); let splitted = buf.split_off(8); // both inline assert_eq!(b"aaaabbbb", &buf[..]); assert_eq!(b"ccccdddd", &splitted[..]); buf.unsplit(splitted); assert_eq!(b"aaaabbbbccccdddd", &buf[..]); } #[test] fn unsplit_arc_different() { let mut buf = BytesMut::with_capacity(64); buf.extend_from_slice(b"aaaabbbbeeee"); buf.split_off(8); //arc let mut buf2 = BytesMut::with_capacity(64); buf2.extend_from_slice(b"ccccddddeeee"); buf2.split_off(8); //arc buf.unsplit(buf2); assert_eq!(b"aaaabbbbccccdddd", &buf[..]); } #[test] fn unsplit_arc_non_contiguous() { let mut buf = BytesMut::with_capacity(64); buf.extend_from_slice(b"aaaabbbbeeeeccccdddd"); let mut buf2 = buf.split_off(8); //arc let buf3 = buf2.split_off(4); //arc buf.unsplit(buf3); assert_eq!(b"aaaabbbbccccdddd", &buf[..]); } #[test] fn unsplit_two_split_offs() { let mut buf = BytesMut::with_capacity(64); buf.extend_from_slice(b"aaaabbbbccccdddd"); let mut buf2 = buf.split_off(8); //arc let buf3 = buf2.split_off(4); //arc buf2.unsplit(buf3); buf.unsplit(buf2); assert_eq!(b"aaaabbbbccccdddd", &buf[..]); } #[test] fn from_iter_no_size_hint() { use std::iter; let mut expect = vec![]; let actual: Bytes = iter::repeat(b'x') .scan(100, |cnt, item| { if *cnt >= 1 { *cnt -= 1; expect.push(item); Some(item) } else { None } }) .collect(); assert_eq!(&actual[..], &expect[..]); } fn test_slice_ref(bytes: &Bytes, start: usize, end: usize, expected: &[u8]) { let slice = &(bytes.as_ref()[start..end]); let sub = bytes.slice_ref(&slice); assert_eq!(&sub[..], expected); } #[test] fn slice_ref_works() { let bytes = Bytes::from(&b"012345678"[..]); test_slice_ref(&bytes, 0, 0, b""); test_slice_ref(&bytes, 0, 3, b"012"); test_slice_ref(&bytes, 2, 6, b"2345"); test_slice_ref(&bytes, 7, 9, b"78"); test_slice_ref(&bytes, 9, 9, b""); } #[test] fn slice_ref_empty() { let bytes = Bytes::from(&b""[..]); let slice = &(bytes.as_ref()[0..0]); let sub = bytes.slice_ref(&slice); assert_eq!(&sub[..], b""); } #[test] #[should_panic] fn slice_ref_catches_not_a_subset() { let bytes = Bytes::from(&b"012345678"[..]); let slice = &b"012345"[0..4]; bytes.slice_ref(slice); } #[test] #[should_panic] fn slice_ref_catches_not_an_empty_subset() { let bytes = Bytes::from(&b"012345678"[..]); let slice = &b""[0..0]; bytes.slice_ref(slice); } #[test] #[should_panic] fn empty_slice_ref_catches_not_an_empty_subset() { let bytes = Bytes::from(&b""[..]); let slice = &b""[0..0]; bytes.slice_ref(slice); }