use candle_core::{test_device, test_utils, Device, IndexOp, Result, Tensor}; // https://github.com/huggingface/candle/issues/364 fn avg_pool2d(dev: &Device) -> Result<()> { let data: Vec = vec![ 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ]; let t = Tensor::from_vec(data, (1, 1, 4, 4), dev)?; let pool = t.avg_pool2d(2)?.squeeze(0)?.squeeze(0)?; assert_eq!(pool.to_vec2::()?, [[0.5f32, 1.], [1., 1.]]); let data: Vec = vec![ 1., 2., 1., 3., 0., 0., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1., ]; let t = Tensor::from_vec(data, (1, 1, 2, 8), dev)?; let pool = t.avg_pool2d(2)?.squeeze(0)?.squeeze(0)?; assert_eq!(pool.to_vec2::()?, [[5. / 4., 6. / 4., 6. / 4., 1.]]); Ok(()) } fn max_pool2d(dev: &Device) -> Result<()> { let data: Vec = vec![ 1., 2., 1., 3., 0., 0., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1., ]; let t = Tensor::from_vec(data, (1, 1, 4, 4), dev)?; let pool = t.max_pool2d(2)?.squeeze(0)?.squeeze(0)?; assert_eq!(pool.to_vec2::()?, [[2f32, 3.], [5., 1.]]); let t = t.reshape((1, 1, 2, 8))?; let pool = t.max_pool2d(2)?.squeeze(0)?.squeeze(0)?; assert_eq!(pool.to_vec2::()?, [[2.0, 3.0, 5.0, 1.0]]); Ok(()) } /* This test corresponds to the following PyTorch script. import torch torch.manual_seed(4242) t = torch.randn((1, 2, 4, 4)) print(t.flatten()) res = torch.nn.functional.avg_pool2d(t, 2) print(res) */ fn avg_pool2d_pytorch(dev: &Device) -> Result<()> { let t = Tensor::new( &[ 0.4056f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997, 3.0616, 1.6541, 0.0964, -0.8338, -1.6523, -0.8323, -0.1699, 0.0823, 0.3526, 0.6843, 0.2395, 1.2279, -0.9287, -1.7030, 0.1370, 0.6047, 0.3770, -0.6266, 0.3529, 2.2013, -0.6836, 0.2477, 1.3127, ], dev, )? .reshape((1, 2, 4, 4))?; let pool = t.avg_pool2d(2)?.squeeze(0)?; assert_eq!( test_utils::to_vec3_round(&pool, 4)?, [ [[-1.1926, -0.0395], [0.2688, 0.1871]], [[0.1835, -0.1606], [0.6249, 0.3217]] ] ); let pool = t.avg_pool2d(3)?.squeeze(0)?; assert_eq!( test_utils::to_vec3_round(&pool, 4)?, [[[0.085]], [[0.0078]]] ); let t = t.reshape((1, 1, 4, 8))?; let pool = t.avg_pool2d(2)?.squeeze(0)?.squeeze(0)?; assert_eq!( test_utils::to_vec2_round(&pool, 4)?, [ [0.7745, 0.0276, -1.6983, 0.12], [0.3542, 0.1625, 0.4542, -0.0014] ] ); Ok(()) } fn upsample_nearest2d(dev: &Device) -> Result<()> { let t = Tensor::arange(0f32, 6f32, dev)?.reshape((1, 1, 2, 3))?; let upsampled = t.upsample_nearest2d(4, 6)?.i(0)?.i(0)?; assert_eq!( t.i(0)?.i(0)?.to_vec2::()?, [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]] ); assert_eq!( upsampled.to_vec2::()?, [ [0.0, 0.0, 1.0, 1.0, 2.0, 2.0], [0.0, 0.0, 1.0, 1.0, 2.0, 2.0], [3.0, 3.0, 4.0, 4.0, 5.0, 5.0], [3.0, 3.0, 4.0, 4.0, 5.0, 5.0] ] ); Ok(()) } test_device!(avg_pool2d, avg_pool2d_cpu, avg_pool2d_gpu); test_device!( avg_pool2d_pytorch, avg_pool2d_pytorch_cpu, avg_pool2d_pytorch_gpu ); test_device!(max_pool2d, max_pool2d_cpu, max_pool2d_gpu); test_device!( upsample_nearest2d, upsample_nearest2d_cpu, upsample_nearest2d_gpu );