#include "ccv.h" #include "ccv_internal.h" #include #include #include "models.inl" static void exit_with_help(void) { printf( "\n \033[1mUSAGE\033[0m\n\n image-net [OPTION...]\n\n" " \033[1mREQUIRED OPTIONS\033[0m\n\n" " --train-list : text file contains a list of image files in format:\n" " class-label \\newline\n" " --test-list : text file contains a list of image files in format:\n" " class-label \\newline\n" " --working-dir : the directory to save progress and produce result model\n\n" " \033[1mOTHER OPTIONS\033[0m\n\n" " --base-dir : change the base directory so that the program can read images from there\n" " --max-epoch : how many epoch are needed for stochastic gradient descent (an epoch corresponds to go through the full train list) [DEFAULT TO 100]\n" " --iterations : how many iterations are needed for stochastic gradient descent (an iteration corresponds to go through a mini batch) [DEFAULT TO 5000]\n\n" ); exit(0); } int main(int argc, char** argv) { static struct option image_net_options[] = { /* help */ {"help", 0, 0, 0}, /* required parameters */ {"train-list", 1, 0, 0}, {"test-list", 1, 0, 0}, {"working-dir", 1, 0, 0}, /* optional parameters */ {"base-dir", 1, 0, 0}, {"max-epoch", 1, 0, 0}, {"iterations", 1, 0, 0}, {0, 0, 0, 0} }; char* train_list = 0; char* test_list = 0; char* working_dir = 0; char* base_dir = 0; ccv_convnet_train_param_t train_params = { .max_epoch = 100, .mini_batch = 128, .sgd_frequency = 1, // do sgd every sgd_frequency batches (mini_batch * device_count * sgd_frequency) .iterations = 50000, .device_count = 4, .peer_access = 1, .symmetric = 1, .image_manipulation = 0.2, .color_gain = 0.001, .input = { .min_dim = 257, .max_dim = 257, }, }; int i, c; while (getopt_long_only(argc, argv, "", image_net_options, &c) != -1) { switch (c) { case 0: exit_with_help(); case 1: train_list = optarg; break; case 2: test_list = optarg; break; case 3: working_dir = optarg; break; case 4: base_dir = optarg; break; case 5: train_params.max_epoch = atoi(optarg); break; case 6: train_params.iterations = atoi(optarg); break; } } if (!train_list || !test_list || !working_dir) exit_with_help(); ccv_enable_default_cache(); FILE *r0 = fopen(train_list, "r"); assert(r0 && "train-list doesn't exists"); FILE* r1 = fopen(test_list, "r"); assert(r1 && "test-list doesn't exists"); char* file = (char*)malloc(1024); int dirlen = (base_dir != 0) ? strlen(base_dir) + 1 : 0; ccv_array_t* categorizeds = ccv_array_new(sizeof(ccv_categorized_t), 64, 0); while (fscanf(r0, "%d %s", &c, file) != EOF) { char* filename = (char*)ccmalloc(1024); if (base_dir != 0) { strncpy(filename, base_dir, 1024); filename[dirlen - 1] = '/'; } strncpy(filename + dirlen, file, 1024 - dirlen); ccv_file_info_t file_info = { .filename = filename, }; // imageNet's category class starts from 1, thus, minus 1 to get 0-index ccv_categorized_t categorized = ccv_categorized(c - 1, 0, &file_info); ccv_array_push(categorizeds, &categorized); } fclose(r0); ccv_array_t* tests = ccv_array_new(sizeof(ccv_categorized_t), 64, 0); while (fscanf(r1, "%d %s", &c, file) != EOF) { char* filename = (char*)ccmalloc(1024); if (base_dir != 0) { strncpy(filename, base_dir, 1024); filename[dirlen - 1] = '/'; } strncpy(filename + dirlen, file, 1024 - dirlen); ccv_file_info_t file_info = { .filename = filename, }; // imageNet's category class starts from 1, thus, minus 1 to get 0-index ccv_categorized_t categorized = ccv_categorized(c - 1, 0, &file_info); ccv_array_push(tests, &categorized); } fclose(r1); free(file); // #define model_params vgg_d_params #define model_params matt_params int depth = sizeof(model_params) / sizeof(ccv_convnet_layer_param_t); ccv_convnet_t* convnet = ccv_convnet_new(1, ccv_size(257, 257), model_params, depth); ccv_convnet_verify(convnet, 1000); ccv_convnet_layer_train_param_t layer_params[depth]; memset(layer_params, 0, sizeof(layer_params)); for (i = 0; i < depth; i++) { layer_params[i].w.decay = 0.0005; layer_params[i].w.learn_rate = 0.01; layer_params[i].w.momentum = 0.9; layer_params[i].bias.decay = 0; layer_params[i].bias.learn_rate = 0.01; layer_params[i].bias.momentum = 0.9; } // set the two full connect layers to last with dropout rate at 0.5 for (i = depth - 3; i < depth - 1; i++) layer_params[i].dor = 0.5; train_params.layer_params = layer_params; ccv_set_cli_output_levels(ccv_cli_output_level_and_above(CCV_CLI_INFO)); ccv_convnet_supervised_train(convnet, categorizeds, tests, working_dir, train_params); ccv_convnet_free(convnet); ccv_disable_cache(); return 0; }