#include "ccv.h" #include "ccv_internal.h" void ccv_hog(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int b_type, int sbin, int size) { assert(a->rows >= size && a->cols >= size && (4 + sbin * 3) <= CCV_MAX_CHANNEL); int rows = a->rows / size; int cols = a->cols / size; b_type = (CCV_GET_DATA_TYPE(b_type) == CCV_64F) ? CCV_64F | (4 + sbin * 3) : CCV_32F | (4 + sbin * 3); ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_format(64, "ccv_hog(%d,%d)", sbin, size), a->sig, CCV_EOF_SIGN); ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, CCV_64F | CCV_32F | (4 + sbin * 3), b_type, sig); ccv_object_return_if_cached(, db); ccv_dense_matrix_t* ag = 0; ccv_dense_matrix_t* mg = 0; ccv_gradient(a, &ag, 0, &mg, 0, 1, 1); float* agp = ag->data.f32; float* mgp = mg->data.f32; int i, j, k, ch = CCV_GET_CHANNEL(a->type); ccv_dense_matrix_t* cn = ccv_dense_matrix_new(rows, cols, CCV_GET_DATA_TYPE(db->type) | (sbin * 2), 0, 0); ccv_dense_matrix_t* ca = ccv_dense_matrix_new(rows, cols, CCV_GET_DATA_TYPE(db->type) | CCV_C1, 0, 0); ccv_zero(cn); // normalize sbin direction-sensitive and sbin * 2 insensitive over 4 normalization factor // accumulating them over sbin * 2 + sbin + 4 channels // TNA - truncation - normalization - accumulation #define TNA(_for_type, idx, a, b, c, d) \ { \ _for_type norm = 1.0 / sqrt(cap[a] + cap[b] + cap[c] + cap[d] + 1e-4); \ for (k = 0; k < sbin * 2; k++) \ { \ _for_type v = 0.5 * ccv_min(cnp[k] * norm, 0.2); \ dbp[4 + sbin + k] += v; \ dbp[idx] += v; \ } \ dbp[idx] *= 0.2357; \ for (k = 0; k < sbin; k++) \ { \ _for_type v = 0.5 * ccv_min((cnp[k] + cnp[k + sbin]) * norm, 0.2); \ dbp[4 + k] += v; \ } \ } #define for_block(_, _for_type) \ _for_type* cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \ for (i = 0; i < rows * size; i++) \ { \ for (j = 0; j < cols * size; j++) \ { \ _for_type agv = agp[j * ch]; \ _for_type mgv = mgp[j * ch]; \ for (k = 1; k < ch; k++) \ if (mgp[j * ch + k] > mgv) \ { \ mgv = mgp[j * ch + k]; \ agv = agp[j * ch + k]; \ } \ _for_type agr0 = (ccv_clamp(agv, 0, 359.99) / 360.0) * (sbin * 2); \ int ag0 = (int)agr0; \ int ag1 = (ag0 + 1 < sbin * 2) ? ag0 + 1 : 0; \ agr0 = agr0 - ag0; \ _for_type agr1 = 1.0 - agr0; \ mgv = mgv / 255.0; \ _for_type yp = ((_for_type)i + 0.5) / (_for_type)size - 0.5; \ _for_type xp = ((_for_type)j + 0.5) / (_for_type)size - 0.5; \ int iyp = (int)floor(yp); \ assert(iyp < rows); \ int ixp = (int)floor(xp); \ assert(ixp < cols); \ _for_type vy0 = yp - iyp; \ _for_type vx0 = xp - ixp; \ _for_type vy1 = 1.0 - vy0; \ _for_type vx1 = 1.0 - vx0; \ if (ixp >= 0 && iyp >= 0) \ { \ cnp[iyp * cn->cols * sbin * 2 + ixp * sbin * 2 + ag0] += agr1 * vx1 * vy1 * mgv; \ cnp[iyp * cn->cols * sbin * 2 + ixp * sbin * 2 + ag1] += agr0 * vx1 * vy1 * mgv; \ } \ if (ixp + 1 < cn->cols && iyp >= 0) \ { \ cnp[iyp * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag0] += agr1 * vx0 * vy1 * mgv; \ cnp[iyp * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag1] += agr0 * vx0 * vy1 * mgv; \ } \ if (ixp >= 0 && iyp + 1 < cn->rows) \ { \ cnp[(iyp + 1) * cn->cols * sbin * 2 + ixp * sbin * 2 + ag0] += agr1 * vx1 * vy0 * mgv; \ cnp[(iyp + 1) * cn->cols * sbin * 2 + ixp * sbin * 2 + ag1] += agr0 * vx1 * vy0 * mgv; \ } \ if (ixp + 1 < cn->cols && iyp + 1 < cn->rows) \ { \ cnp[(iyp + 1) * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag0] += agr1 * vx0 * vy0 * mgv; \ cnp[(iyp + 1) * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag1] += agr0 * vx0 * vy0 * mgv; \ } \ } \ agp += a->cols * ch; \ mgp += a->cols * ch; \ } \ ccv_matrix_free(ag); \ ccv_matrix_free(mg); \ cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \ _for_type* cap = (_for_type*)ccv_get_dense_matrix_cell(ca, 0, 0, 0); \ for (i = 0; i < rows; i++) \ { \ for (j = 0; j < cols; j++) \ { \ *cap = 0; \ for (k = 0; k < sbin; k++) \ *cap += (cnp[k] + cnp[k + sbin]) * (cnp[k] + cnp[k + sbin]); \ cnp += 2 * sbin; \ cap++; \ } \ } \ cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \ cap = (_for_type*)ccv_get_dense_matrix_cell(ca, 0, 0, 0); \ ccv_zero(db); \ _for_type* dbp = (_for_type*)ccv_get_dense_matrix_cell(db, 0, 0, 0); \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, 1, 0, 0); \ TNA(_for_type, 2, 0, cols, cols, 0); \ TNA(_for_type, 3, 0, 0, 0, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (j = 1; j < cols - 1; j++) \ { \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, 1, 0, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -1, 0, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 0, cols, cols, 0); \ TNA(_for_type, 1, 0, 0, 0, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -1, 0, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (i = 1; i < rows - 1; i++) \ { \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, 0, cols, cols, 0); \ TNA(_for_type, 3, 0, -cols, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (j = 1; j < cols - 1; j++) \ { \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 0, cols, cols, 0); \ TNA(_for_type, 1, 0, -cols, -cols, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 1, 1, 0, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, 0, 0, 0, 0); \ TNA(_for_type, 3, 0, -cols, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (j = 1; j < cols - 1; j++) \ { \ TNA(_for_type, 0, 1, 1, 0, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, -1, -1, 0, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 0, 0, 0, 0); \ TNA(_for_type, 1, 0, -cols, -cols, 0); \ TNA(_for_type, 2, -1, -1, 0, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); ccv_matrix_typeof(db->type, for_block); #undef for_block #undef TNA ccv_matrix_free(cn); ccv_matrix_free(ca); } /* it is a supposely cleaner and faster implementation than original OpenCV (ccv_canny_deprecated, * removed, since the newer implementation achieve bit accuracy with OpenCV's), after a lot * profiling, the current implementation still uses integer to speed up */ void ccv_canny(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int size, double low_thresh, double high_thresh) { assert(CCV_GET_CHANNEL(a->type) == CCV_C1); ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_format(64, "ccv_canny(%d,%la,%la)", size, low_thresh, high_thresh), a->sig, CCV_EOF_SIGN); type = (type == 0) ? CCV_8U | CCV_C1 : CCV_GET_DATA_TYPE(type) | CCV_C1; ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_C1 | CCV_ALL_DATA_TYPE, type, sig); ccv_object_return_if_cached(, db); if ((a->type & CCV_8U) || (a->type & CCV_32S)) { ccv_dense_matrix_t* dx = 0; ccv_dense_matrix_t* dy = 0; ccv_sobel(a, &dx, 0, size, 0); ccv_sobel(a, &dy, 0, 0, size); /* special case, all integer */ int low = (int)(low_thresh + 0.5); int high = (int)(high_thresh + 0.5); int* dxi = dx->data.i32; int* dyi = dy->data.i32; int i, j; int* mbuf = (int*)alloca(3 * (a->cols + 2) * sizeof(int)); memset(mbuf, 0, 3 * (a->cols + 2) * sizeof(int)); int* rows[3]; rows[0] = mbuf + 1; rows[1] = mbuf + (a->cols + 2) + 1; rows[2] = mbuf + 2 * (a->cols + 2) + 1; for (j = 0; j < a->cols; j++) rows[1][j] = abs(dxi[j]) + abs(dyi[j]); dxi += a->cols; dyi += a->cols; int* map = (int*)ccmalloc(sizeof(int) * (a->rows + 2) * (a->cols + 2)); int map_cols = a->cols + 2; memset(map, 0, sizeof(int) * map_cols); int* map_ptr = map + map_cols + 1; int** stack = (int**)ccmalloc(sizeof(int*) * a->rows * a->cols); int** stack_top = stack; int** stack_bottom = stack; for (i = 1; i <= a->rows; i++) { /* the if clause should be unswitched automatically, no need to manually do so */ if (i == a->rows) memset(rows[2], 0, sizeof(int) * a->cols); else for (j = 0; j < a->cols; j++) rows[2][j] = abs(dxi[j]) + abs(dyi[j]); int* _dx = dxi - a->cols; int* _dy = dyi - a->cols; map_ptr[-1] = 0; int suppress = 0; for (j = 0; j < a->cols; j++) { int f = rows[1][j]; if (f > low) { int x = abs(_dx[j]); int y = abs(_dy[j]); int s = _dx[j] ^ _dy[j]; /* x * tan(22.5) */ int tg22x = x * (int)(0.4142135623730950488016887242097 * (1 << 15) + 0.5); /* x * tan(67.5) == 2 * x + x * tan(22.5) */ int tg67x = tg22x + ((x + x) << 15); y <<= 15; /* it is a little different from the Canny original paper because we adopted the coordinate system of * top-left corner as origin. Thus, the derivative of y convolved with matrix: * |-1 -2 -1| * | 0 0 0| * | 1 2 1| * actually is the reverse of real y. Thus, the computed angle will be mirrored around x-axis. * In this case, when angle is -45 (135), we compare with north-east and south-west, and for 45, * we compare with north-west and south-east (in traditional coordinate system sense, the same if we * adopt top-left corner as origin for "north", "south", "east", "west" accordingly) */ #define high_block \ { \ if (f > high && !suppress && map_ptr[j - map_cols] != 2) \ { \ map_ptr[j] = 2; \ suppress = 1; \ *(stack_top++) = map_ptr + j; \ } else { \ map_ptr[j] = 1; \ } \ continue; \ } /* sometimes, we end up with same f in integer domain, for that case, we will take the first occurrence * suppressing the second with flag */ if (y < tg22x) { if (f > rows[1][j - 1] && f >= rows[1][j + 1]) high_block; } else if (y > tg67x) { if (f > rows[0][j] && f >= rows[2][j]) high_block; } else { s = s < 0 ? -1 : 1; if (f > rows[0][j - s] && f > rows[2][j + s]) high_block; } #undef high_block } map_ptr[j] = 0; suppress = 0; } map_ptr[a->cols] = 0; map_ptr += map_cols; dxi += a->cols; dyi += a->cols; int* row = rows[0]; rows[0] = rows[1]; rows[1] = rows[2]; rows[2] = row; } memset(map_ptr - 1, 0, sizeof(int) * map_cols); int dr[] = {-1, 1, -map_cols - 1, -map_cols, -map_cols + 1, map_cols - 1, map_cols, map_cols + 1}; while (stack_top > stack_bottom) { map_ptr = *(--stack_top); for (i = 0; i < 8; i++) if (map_ptr[dr[i]] == 1) { map_ptr[dr[i]] = 2; *(stack_top++) = map_ptr + dr[i]; } } map_ptr = map + map_cols + 1; unsigned char* b_ptr = db->data.u8; #define for_block(_, _for_set) \ for (i = 0; i < a->rows; i++) \ { \ for (j = 0; j < a->cols; j++) \ _for_set(b_ptr, j, (map_ptr[j] == 2), 0); \ map_ptr += map_cols; \ b_ptr += db->step; \ } ccv_matrix_setter(db->type, for_block); #undef for_block ccfree(stack); ccfree(map); ccv_matrix_free(dx); ccv_matrix_free(dy); } else { /* general case, use all ccv facilities to deal with it */ ccv_dense_matrix_t* mg = 0; ccv_dense_matrix_t* ag = 0; ccv_gradient(a, &ag, 0, &mg, 0, size, size); ccv_matrix_free(ag); ccv_matrix_free(mg); /* FIXME: Canny implementation for general case */ } } void ccv_close_outline(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type) { assert((CCV_GET_CHANNEL(a->type) == CCV_C1) && ((a->type & CCV_8U) || (a->type & CCV_32S) || (a->type & CCV_64S))); ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_literal("ccv_close_outline"), a->sig, CCV_EOF_SIGN); type = ((type == 0) || (type & CCV_32F) || (type & CCV_64F)) ? CCV_GET_DATA_TYPE(a->type) | CCV_C1 : CCV_GET_DATA_TYPE(type) | CCV_C1; ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_C1 | CCV_ALL_DATA_TYPE, type, sig); ccv_object_return_if_cached(, db); int i, j; unsigned char* a_ptr = a->data.u8; unsigned char* b_ptr = db->data.u8; ccv_zero(db); #define for_block(_for_get, _for_set_b, _for_get_b) \ for (i = 0; i < a->rows - 1; i++) \ { \ for (j = 0; j < a->cols - 1; j++) \ { \ if (!_for_get_b(b_ptr, j, 0)) \ _for_set_b(b_ptr, j, _for_get(a_ptr, j, 0), 0); \ if (_for_get(a_ptr, j, 0) && _for_get(a_ptr + a->step, j + 1, 0)) \ { \ _for_set_b(b_ptr + a->step, j, 1, 0); \ _for_set_b(b_ptr, j + 1, 1, 0); \ } \ if (_for_get(a_ptr + a->step, j, 0) && _for_get(a_ptr, j + 1, 0)) \ { \ _for_set_b(b_ptr, j, 1, 0); \ _for_set_b(b_ptr + a->step, j + 1, 1, 0); \ } \ } \ if (!_for_get_b(b_ptr, a->cols - 1, 0)) \ _for_set_b(b_ptr, a->cols - 1, _for_get(a_ptr, a->cols - 1, 0), 0); \ a_ptr += a->step; \ b_ptr += db->step; \ } \ for (j = 0; j < a->cols; j++) \ { \ if (!_for_get_b(b_ptr, j, 0)) \ _for_set_b(b_ptr, j, _for_get(a_ptr, j, 0), 0); \ } ccv_matrix_getter_integer_only(a->type, ccv_matrix_setter_getter_integer_only, db->type, for_block); #undef for_block } int ccv_otsu(ccv_dense_matrix_t* a, double* outvar, int range) { assert((a->type & CCV_32S) || (a->type & CCV_8U)); int* histogram = (int*)alloca(range * sizeof(int)); memset(histogram, 0, sizeof(int) * range); int i, j; unsigned char* a_ptr = a->data.u8; #define for_block(_, _for_get) \ for (i = 0; i < a->rows; i++) \ { \ for (j = 0; j < a->cols; j++) \ histogram[ccv_clamp((int)_for_get(a_ptr, j, 0), 0, range - 1)]++; \ a_ptr += a->step; \ } ccv_matrix_getter(a->type, for_block); #undef for_block double sum = 0, sumB = 0; for (i = 0; i < range; i++) sum += i * histogram[i]; int wB = 0, wF = 0, total = a->rows * a->cols; double maxVar = 0; int threshold = 0; for (i = 0; i < range; i++) { wB += histogram[i]; if (wB == 0) continue; wF = total - wB; if (wF == 0) break; sumB += i * histogram[i]; double mB = sumB / wB; double mF = (sum - sumB) / wF; double var = wB * wF * (mB - mF) * (mB - mF); if (var > maxVar) { maxVar = var; threshold = i; } } if (outvar != 0) *outvar = maxVar / total / total; return threshold; } #define LK_MAX_ITER (30) #define LK_EPSILON (0.01) /* this code is a rewrite from OpenCV's legendary Lucas-Kanade optical flow implementation */ void ccv_optical_flow_lucas_kanade(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b, ccv_array_t* point_a, ccv_array_t** point_b, ccv_size_t win_size, int level, double min_eigen) { assert(a && b && a->rows == b->rows && a->cols == b->cols); assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(b->type) && CCV_GET_DATA_TYPE(a->type) == CCV_GET_DATA_TYPE(b->type)); assert(CCV_GET_CHANNEL(a->type) == 1); assert(CCV_GET_DATA_TYPE(a->type) == CCV_8U); assert(point_a->rnum > 0); level = ccv_clamp(level + 1, 1, (int)(log((double)ccv_min(a->rows, a->cols) / ccv_max(win_size.width * 2, win_size.height * 2)) / log(2.0) + 0.5)); ccv_declare_derived_signature(sig, a->sig != 0 && b->sig != 0 && point_a->sig != 0, ccv_sign_with_format(128, "ccv_optical_flow_lucas_kanade(%d,%d,%d,%la)", win_size.width, win_size.height, level, min_eigen), a->sig, b->sig, point_a->sig, CCV_EOF_SIGN); ccv_array_t* seq = *point_b = ccv_array_new(sizeof(ccv_decimal_point_with_status_t), point_a->rnum, sig); ccv_object_return_if_cached(, seq); seq->rnum = point_a->rnum; ccv_dense_matrix_t** pyr_a = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_a_dx = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_a_dy = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_b = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * level); int i, j, t, x, y; /* generating image pyramid */ pyr_a[0] = a; pyr_a_dx[0] = pyr_a_dy[0] = 0; ccv_sobel(pyr_a[0], &pyr_a_dx[0], 0, 3, 0); ccv_sobel(pyr_a[0], &pyr_a_dy[0], 0, 0, 3); pyr_b[0] = b; for (i = 1; i < level; i++) { pyr_a[i] = pyr_a_dx[i] = pyr_a_dy[i] = pyr_b[i] = 0; ccv_sample_down(pyr_a[i - 1], &pyr_a[i], 0, 0, 0); ccv_sobel(pyr_a[i], &pyr_a_dx[i], 0, 3, 0); ccv_sobel(pyr_a[i], &pyr_a_dy[i], 0, 0, 3); ccv_sample_down(pyr_b[i - 1], &pyr_b[i], 0, 0, 0); } int* wi = (int*)alloca(sizeof(int) * win_size.width * win_size.height); int* widx = (int*)alloca(sizeof(int) * win_size.width * win_size.height); int* widy = (int*)alloca(sizeof(int) * win_size.width * win_size.height); ccv_decimal_point_t half_win = ccv_decimal_point((win_size.width - 1) * 0.5f, (win_size.height - 1) * 0.5f); const int W_BITS14 = 14, W_BITS7 = 7, W_BITS9 = 9; const float FLT_SCALE = 1.0f / (1 << 25); // clean up status to 1 for (i = 0; i < point_a->rnum; i++) { ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i); point_with_status->status = 1; } int prev_rows, prev_cols; for (t = level - 1; t >= 0; t--) { ccv_dense_matrix_t* a = pyr_a[t]; ccv_dense_matrix_t* adx = pyr_a_dx[t]; ccv_dense_matrix_t* ady = pyr_a_dy[t]; assert(CCV_GET_DATA_TYPE(adx->type) == CCV_32S); assert(CCV_GET_DATA_TYPE(ady->type) == CCV_32S); ccv_dense_matrix_t* b = pyr_b[t]; for (i = 0; i < point_a->rnum; i++) { ccv_decimal_point_t prev_point = *(ccv_decimal_point_t*)ccv_array_get(point_a, i); ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i); prev_point.x = prev_point.x / (float)(1 << t); prev_point.y = prev_point.y / (float)(1 << t); ccv_decimal_point_t next_point; if (t == level - 1) next_point = prev_point; else { next_point.x = point_with_status->point.x * 2 + (a->cols - prev_cols * 2) * 0.5; next_point.y = point_with_status->point.y * 2 + (a->rows - prev_rows * 2) * 0.5; } point_with_status->point = next_point; prev_point.x -= half_win.x; prev_point.y -= half_win.y; ccv_point_t iprev_point = ccv_point((int)prev_point.x, (int)prev_point.y); if (iprev_point.x < 0 || iprev_point.x >= a->cols - win_size.width - 1 || iprev_point.y < 0 || iprev_point.y >= a->rows - win_size.height - 1) { if (t == 0) point_with_status->status = 0; continue; } float xd = prev_point.x - iprev_point.x; float yd = prev_point.y - iprev_point.y; int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5); int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5); int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5); int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10; float a11 = 0, a12 = 0, a22 = 0; unsigned char* a_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, a, iprev_point.y, iprev_point.x, 0); int* adx_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, adx, iprev_point.y, iprev_point.x, 0); int* ady_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, ady, iprev_point.y, iprev_point.x, 0); int* wi_ptr = wi; int* widx_ptr = widx; int* widy_ptr = widy; for (y = 0; y < win_size.height; y++) { for (x = 0; x < win_size.width; x++) { wi_ptr[x] = ccv_descale(a_ptr[x] * iw00 + a_ptr[x + 1] * iw01 + a_ptr[x + a->step] * iw10 + a_ptr[x + a->step + 1] * iw11, W_BITS7); // because we use 3x3 sobel, which scaled derivative up by 4 widx_ptr[x] = ccv_descale(adx_ptr[x] * iw00 + adx_ptr[x + 1] * iw01 + adx_ptr[x + adx->cols] * iw10 + adx_ptr[x + adx->cols + 1] * iw11, W_BITS9); widy_ptr[x] = ccv_descale(ady_ptr[x] * iw00 + ady_ptr[x + 1] * iw01 + ady_ptr[x + ady->cols] + iw10 + ady_ptr[x + ady->cols + 1] * iw11, W_BITS9); a11 += (float)(widx_ptr[x] * widx_ptr[x]); a12 += (float)(widx_ptr[x] * widy_ptr[x]); a22 += (float)(widy_ptr[x] * widy_ptr[x]); } a_ptr += a->step; adx_ptr += adx->cols; ady_ptr += ady->cols; wi_ptr += win_size.width; widx_ptr += win_size.width; widy_ptr += win_size.width; } a11 *= FLT_SCALE; a12 *= FLT_SCALE; a22 *= FLT_SCALE; float D = a11 * a22 - a12 * a12; float eigen = (a22 + a11 - sqrtf((a11 - a22) * (a11 - a22) + 4.0f * a12 * a12)) / (2 * win_size.width * win_size.height); if (eigen < min_eigen || D < FLT_EPSILON) { if (t == 0) point_with_status->status = 0; continue; } D = 1.0f / D; next_point.x -= half_win.x; next_point.y -= half_win.y; ccv_decimal_point_t prev_delta; for (j = 0; j < LK_MAX_ITER; j++) { ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y); if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 || inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1) break; float xd = next_point.x - inext_point.x; float yd = next_point.y - inext_point.y; int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5); int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5); int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5); int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10; float b1 = 0, b2 = 0; unsigned char* b_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, b, inext_point.y, inext_point.x, 0); int* wi_ptr = wi; int* widx_ptr = widx; int* widy_ptr = widy; for (y = 0; y < win_size.height; y++) { for (x = 0; x < win_size.width; x++) { int diff = ccv_descale(b_ptr[x] * iw00 + b_ptr[x + 1] * iw01 + b_ptr[x + b->step] * iw10 + b_ptr[x + b->step + 1] * iw11, W_BITS7) - wi_ptr[x]; b1 += (float)(diff * widx_ptr[x]); b2 += (float)(diff * widy_ptr[x]); } b_ptr += b->step; wi_ptr += win_size.width; widx_ptr += win_size.width; widy_ptr += win_size.width; } b1 *= FLT_SCALE; b2 *= FLT_SCALE; ccv_decimal_point_t delta = ccv_decimal_point((a12 * b2 - a22 * b1) * D, (a12 * b1 - a11 * b2) * D); next_point.x += delta.x; next_point.y += delta.y; if (delta.x * delta.x + delta.y * delta.y < LK_EPSILON) break; if (j > 0 && fabs(prev_delta.x - delta.x) < 0.01 && fabs(prev_delta.y - delta.y) < 0.01) { next_point.x -= delta.x * 0.5; next_point.y -= delta.y * 0.5; break; } prev_delta = delta; } ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y); if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 || inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1) point_with_status->status = 0; else { point_with_status->point.x = next_point.x + half_win.x; point_with_status->point.y = next_point.y + half_win.y; } } prev_rows = a->rows; prev_cols = a->cols; ccv_matrix_free(adx); ccv_matrix_free(ady); if (t > 0) { ccv_matrix_free(a); ccv_matrix_free(b); } } }