#include "ccv.h" #include "ccv_internal.h" #if defined(HAVE_SSE2) #include #elif defined(HAVE_NEON) #include #endif #ifdef HAVE_GSL #include #include #endif #ifdef USE_DISPATCH #include #endif #include "3rdparty/sqlite3/sqlite3.h" const ccv_scd_param_t ccv_scd_default_params = { .interval = 5, .min_neighbors = 1, .step_through = 4, .size = { .width = 48, .height = 48, }, }; void ccv_scd(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type) { int ch = CCV_GET_CHANNEL(a->type); assert(ch == 1 || ch == 3); ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_literal("ccv_scd"), a->sig, CCV_EOF_SIGN); // diagonal u v, and x, y, therefore 8 channels ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_32F | 8, CCV_32F | 8, sig); ccv_object_return_if_cached(, db); ccv_dense_matrix_t* blur = 0; ccv_blur(a, &blur, 0, 0.5); // do a modest blur, which suppresses noise ccv_dense_matrix_t* dx = 0; ccv_sobel(blur, &dx, 0, 1, 0); ccv_dense_matrix_t* dy = 0; ccv_sobel(blur, &dy, 0, 0, 1); ccv_dense_matrix_t* du = 0; ccv_sobel(blur, &du, 0, 1, 1); ccv_dense_matrix_t* dv = 0; ccv_sobel(blur, &dv, 0, -1, 1); ccv_matrix_free(blur); assert(CCV_GET_DATA_TYPE(dx->type) == CCV_GET_DATA_TYPE(dy->type)); assert(CCV_GET_DATA_TYPE(dy->type) == CCV_GET_DATA_TYPE(du->type)); assert(CCV_GET_DATA_TYPE(du->type) == CCV_GET_DATA_TYPE(dv->type)); assert(CCV_GET_CHANNEL(dx->type) == CCV_GET_CHANNEL(dy->type)); assert(CCV_GET_CHANNEL(dy->type) == CCV_GET_CHANNEL(du->type)); assert(CCV_GET_CHANNEL(du->type) == CCV_GET_CHANNEL(dv->type)); // this is a naive unoptimized implementation yet int i, j, k; unsigned char* dx_ptr = dx->data.u8; unsigned char* dy_ptr = dy->data.u8; unsigned char* du_ptr = du->data.u8; unsigned char* dv_ptr = dv->data.u8; float* dbp = db->data.f32; if (ch == 1) { #define for_block(_, _for_get) \ for (i = 0; i < a->rows; i++) \ { \ for (j = 0; j < a->cols; j++) \ { \ float fdx = _for_get(dx_ptr, j, 0), fdy = _for_get(dy_ptr, j, 0); \ float fdu = _for_get(du_ptr, j, 0), fdv = _for_get(dv_ptr, j, 0); \ float adx = fabsf(fdx), ady = fabsf(fdy); \ float adu = fabsf(fdu), adv = fabsf(fdv); \ dbp[0] = fdx, dbp[1] = fdy; \ dbp[2] = fdu, dbp[3] = fdv; \ dbp[4] = adx, dbp[5] = ady; \ dbp[6] = adu, dbp[7] = adv; \ dbp += 8; \ } \ dx_ptr += dx->step; \ dy_ptr += dy->step; \ du_ptr += du->step; \ dv_ptr += dv->step; \ } ccv_matrix_getter(dx->type, for_block); #undef for_block } else { #define for_block(_, _for_get) \ for (i = 0; i < a->rows; i++) \ { \ for (j = 0; j < a->cols; j++) \ { \ float fdx = _for_get(dx_ptr, j * ch, 0), fdy = _for_get(dy_ptr, j * ch, 0); \ float fdu = _for_get(du_ptr, j * ch, 0), fdv = _for_get(dv_ptr, j * ch, 0); \ float adx = fabsf(fdx), ady = fabsf(fdy); \ float adu = fabsf(fdu), adv = fabsf(fdv); \ /* select the strongest ones from all the channels */ \ for (k = 1; k < ch; k++) \ { \ if (fabsf((float)_for_get(dx_ptr, j * ch + k, 0)) > adx) \ { \ fdx = _for_get(dx_ptr, j * ch + k, 0); \ adx = fabsf(fdx); \ } \ if (fabsf((float)_for_get(dy_ptr, j * ch + k, 0)) > ady) \ { \ fdy = _for_get(dy_ptr, j * ch + k, 0); \ ady = fabsf(fdy); \ } \ if (fabsf((float)_for_get(du_ptr, j * ch + k, 0)) > adu) \ { \ fdu = _for_get(du_ptr, j * ch + k, 0); \ adu = fabsf(fdu); \ } \ if (fabsf((float)_for_get(dv_ptr, j * ch + k, 0)) > adv) \ { \ fdv = _for_get(dv_ptr, j * ch + k, 0); \ adv = fabsf(fdv); \ } \ } \ dbp[0] = fdx, dbp[1] = fdy; \ dbp[2] = fdu, dbp[3] = fdv; \ dbp[4] = adx, dbp[5] = ady; \ dbp[6] = adu, dbp[7] = adv; \ dbp += 8; \ } \ dx_ptr += dx->step; \ dy_ptr += dy->step; \ du_ptr += du->step; \ dv_ptr += dv->step; \ } ccv_matrix_getter(dx->type, for_block); #undef for_block } ccv_matrix_free(dx); ccv_matrix_free(dy); ccv_matrix_free(du); ccv_matrix_free(dv); } #if defined(HAVE_SSE2) static inline void _ccv_scd_run_feature_at_sse2(float* at, int cols, ccv_scd_stump_feature_t* feature, __m128 surf[8]) { int i; // extract feature for (i = 0; i < 4; i++) { __m128 d0 = _mm_loadu_ps(at + (cols * feature->sy[i] + feature->sx[i]) * 8); __m128 d1 = _mm_loadu_ps(at + 4 + (cols * feature->sy[i] + feature->sx[i]) * 8); __m128 du0 = _mm_loadu_ps(at + (cols * feature->dy[i] + feature->sx[i]) * 8); __m128 du1 = _mm_loadu_ps(at + 4 + (cols * feature->dy[i] + feature->sx[i]) * 8); __m128 dv0 = _mm_loadu_ps(at + (cols * feature->sy[i] + feature->dx[i]) * 8); __m128 dv1 = _mm_loadu_ps(at + 4 + (cols * feature->sy[i] + feature->dx[i]) * 8); __m128 duv0 = _mm_loadu_ps(at + (cols * feature->dy[i] + feature->dx[i]) * 8); __m128 duv1 = _mm_loadu_ps(at + 4 + (cols * feature->dy[i] + feature->dx[i]) * 8); surf[i * 2] = _mm_sub_ps(_mm_add_ps(duv0, d0), _mm_add_ps(du0, dv0)); surf[i * 2 + 1] = _mm_sub_ps(_mm_add_ps(duv1, d1), _mm_add_ps(du1, dv1)); } // L2Hys normalization __m128 v0 = _mm_add_ps(_mm_mul_ps(surf[0], surf[0]), _mm_mul_ps(surf[1], surf[1])); __m128 v1 = _mm_add_ps(_mm_mul_ps(surf[2], surf[2]), _mm_mul_ps(surf[3], surf[3])); __m128 v2 = _mm_add_ps(_mm_mul_ps(surf[4], surf[4]), _mm_mul_ps(surf[5], surf[5])); __m128 v3 = _mm_add_ps(_mm_mul_ps(surf[6], surf[6]), _mm_mul_ps(surf[7], surf[7])); v0 = _mm_add_ps(v0, v1); v2 = _mm_add_ps(v2, v3); union { float f[4]; __m128 p; } vx; vx.p = _mm_add_ps(v0, v2); v0 = _mm_set1_ps(1.0 / (sqrtf(vx.f[0] + vx.f[1] + vx.f[2] + vx.f[3]) + 1e-6)); static float thlf = -2.0 / 5.65685424949; // -sqrtf(32) static float thuf = 2.0 / 5.65685424949; // sqrtf(32) const __m128 thl = _mm_set1_ps(thlf); const __m128 thu = _mm_set1_ps(thuf); for (i = 0; i < 8; i++) { surf[i] = _mm_mul_ps(surf[i], v0); surf[i] = _mm_min_ps(surf[i], thu); surf[i] = _mm_max_ps(surf[i], thl); } __m128 u0 = _mm_add_ps(_mm_mul_ps(surf[0], surf[0]), _mm_mul_ps(surf[1], surf[1])); __m128 u1 = _mm_add_ps(_mm_mul_ps(surf[2], surf[2]), _mm_mul_ps(surf[3], surf[3])); __m128 u2 = _mm_add_ps(_mm_mul_ps(surf[4], surf[4]), _mm_mul_ps(surf[5], surf[5])); __m128 u3 = _mm_add_ps(_mm_mul_ps(surf[6], surf[6]), _mm_mul_ps(surf[7], surf[7])); u0 = _mm_add_ps(u0, u1); u2 = _mm_add_ps(u2, u3); union { float f[4]; __m128 p; } ux; ux.p = _mm_add_ps(u0, u2); u0 = _mm_set1_ps(1.0 / (sqrtf(ux.f[0] + ux.f[1] + ux.f[2] + ux.f[3]) + 1e-6)); for (i = 0; i < 8; i++) surf[i] = _mm_mul_ps(surf[i], u0); } #else static inline void _ccv_scd_run_feature_at(float* at, int cols, ccv_scd_stump_feature_t* feature, float surf[32]) { int i, j; // extract feature for (i = 0; i < 4; i++) { float* d = at + (cols * feature->sy[i] + feature->sx[i]) * 8; float* du = at + (cols * feature->dy[i] + feature->sx[i]) * 8; float* dv = at + (cols * feature->sy[i] + feature->dx[i]) * 8; float* duv = at + (cols * feature->dy[i] + feature->dx[i]) * 8; for (j = 0; j < 8; j++) surf[i * 8 + j] = duv[j] - du[j] + d[j] - dv[j]; } // L2Hys normalization float v = 0; for (i = 0; i < 32; i++) v += surf[i] * surf[i]; v = 1.0 / (sqrtf(v) + 1e-6); static float theta = 2.0 / 5.65685424949; // sqrtf(32) float u = 0; for (i = 0; i < 32; i++) { surf[i] = surf[i] * v; surf[i] = ccv_clamp(surf[i], -theta, theta); u += surf[i] * surf[i]; } u = 1.0 / (sqrtf(u) + 1e-6); for (i = 0; i < 32; i++) surf[i] = surf[i] * u; } #endif #ifdef HAVE_GSL static ccv_array_t* _ccv_scd_collect_negatives(gsl_rng* rng, ccv_size_t size, ccv_array_t* hard_mine, int total, int grayscale) { ccv_array_t* negatives = ccv_array_new(ccv_compute_dense_matrix_size(size.height, size.width, CCV_8U | (grayscale ? CCV_C1 : CCV_C3)), total, 0); int i, j, k; for (i = 0; i < total;) { FLUSH(CCV_CLI_INFO, " - collect negatives %d%% (%d / %d)", (i + 1) * 100 / total, i + 1, total); double ratio = (double)(total - i) / hard_mine->rnum; for (j = 0; j < hard_mine->rnum && i < total; j++) { ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(hard_mine, j); ccv_dense_matrix_t* image = 0; ccv_read(file_info->filename, &image, CCV_IO_ANY_FILE | (grayscale ? CCV_IO_GRAY : CCV_IO_RGB_COLOR)); if (image == 0) { PRINT(CCV_CLI_ERROR, "\n - %s: cannot be open, possibly corrupted\n", file_info->filename); continue; } double max_scale_ratio = ccv_min((double)image->rows / size.height, (double)image->cols / size.width); if (max_scale_ratio <= 0.5) // too small to be interesting continue; for (k = 0; k < ratio; k++) if (k < (int)ratio || gsl_rng_uniform(rng) <= ccv_max(0.1, ratio - (int)ratio)) { FLUSH(CCV_CLI_INFO, " - collect negatives %d%% (%d / %d)", (i + 1) * 100 / total, i + 1, total); ccv_rect_t rect; double scale_ratio = gsl_rng_uniform(rng) * (max_scale_ratio - 0.5) + 0.5; rect.width = ccv_min(image->cols, (int)(size.width * scale_ratio + 0.5)); rect.height = ccv_min(image->rows, (int)(size.height * scale_ratio + 0.5)); rect.x = gsl_rng_uniform_int(rng, ccv_max(image->cols - rect.width + 1, 1)); rect.y = gsl_rng_uniform_int(rng, ccv_max(image->rows - rect.height + 1, 1)); ccv_dense_matrix_t* sliced = 0; ccv_slice(image, (ccv_matrix_t**)&sliced, 0, rect.y, rect.x, rect.height, rect.width); ccv_dense_matrix_t* b = 0; if (size.width > rect.width) ccv_resample(sliced, &b, 0, size.height, size.width, CCV_INTER_CUBIC); else ccv_resample(sliced, &b, 0, size.height, size.width, CCV_INTER_AREA); ccv_matrix_free(sliced); b->sig = 0; // this leveraged the fact that because I know the ccv_dense_matrix_t is continuous in memory ccv_array_push(negatives, b); ccv_matrix_free(b); ++i; if (i >= total) break; } ccv_matrix_free(image); } } PRINT(CCV_CLI_INFO, "\n"); ccv_make_array_immutable(negatives); return negatives; } static ccv_array_t*_ccv_scd_collect_positives(ccv_size_t size, ccv_array_t* posfiles, int grayscale) { ccv_array_t* positives = ccv_array_new(ccv_compute_dense_matrix_size(size.height, size.width, CCV_8U | (grayscale ? CCV_C1 : CCV_C3)), posfiles->rnum, 0); int i; for (i = 0; i < posfiles->rnum; i++) { FLUSH(CCV_CLI_INFO, " - collect positives %d%% (%d / %d)", (i + 1) * 100 / posfiles->rnum, i + 1, posfiles->rnum); ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(posfiles, i); ccv_dense_matrix_t* a = 0; ccv_read(file_info->filename, &a, CCV_IO_ANY_FILE | (grayscale ? CCV_IO_GRAY : CCV_IO_RGB_COLOR)); a->sig = 0; ccv_array_push(positives, a); ccv_matrix_free(a); } PRINT(CCV_CLI_INFO, "\n"); ccv_make_array_immutable(positives); return positives; } static ccv_array_t* _ccv_scd_stump_features(ccv_size_t base, int range_through, int step_through, ccv_size_t size) { ccv_array_t* features = ccv_array_new(sizeof(ccv_scd_stump_feature_t), 64, 0); int x, y, w, h; for (w = base.width; w <= size.width; w += range_through) if (w % 4 == 0) // only allow 4:1 { h = w / 4; for (x = 0; x <= size.width - w; x += step_through) for (y = 0; y <= size.height - h; y += step_through) { // 4x1 feature ccv_scd_stump_feature_t feature; feature.sx[0] = x; feature.dx[0] = x + (w / 4); feature.sx[1] = x + (w / 4); feature.dx[1] = x + 2 * (w / 4); feature.sx[2] = x + 2 * (w / 4); feature.dx[2] = x + 3 * (w / 4); feature.sx[3] = x + 3 * (w / 4); feature.dx[3] = x + w; feature.sy[0] = feature.sy[1] = feature.sy[2] = feature.sy[3] = y; feature.dy[0] = feature.dy[1] = feature.dy[2] = feature.dy[3] = y + h; ccv_array_push(features, &feature); } } for (h = base.height; h <= size.height; h += range_through) if (h % 4 == 0) // only allow 1:4 { w = h / 4; for (x = 0; x <= size.width - w; x += step_through) for (y = 0; y <= size.height - h; y += step_through) { // 1x4 feature ccv_scd_stump_feature_t feature; feature.sx[0] = feature.sx[1] = feature.sx[2] = feature.sx[3] = x; feature.dx[0] = feature.dx[1] = feature.dx[2] = feature.dx[3] = x + w; feature.sy[0] = y; feature.dy[0] = y + (h / 4); feature.sy[1] = y + (h / 4); feature.dy[1] = y + 2 * (h / 4); feature.sy[2] = y + 2 * (h / 4); feature.dy[2] = y + 3 * (h / 4); feature.sy[3] = y + 3 * (h / 4); feature.dy[3] = y + h; ccv_array_push(features, &feature); } } for (w = base.width; w <= size.width; w += range_through) for (h = base.height; h <= size.height; h += range_through) for (x = 0; x <= size.width - w; x += step_through) for (y = 0; y <= size.height - h; y += step_through) if (w % 2 == 0 && h % 2 == 0 && (w == h || w == h * 2 || w * 2 == h || w * 2 == h * 3 || w * 3 == h * 2)) // allow 1:1, 1:2, 2:1, 2:3, 3:2 { // 2x2 feature ccv_scd_stump_feature_t feature; feature.sx[0] = feature.sx[1] = x; feature.dx[0] = feature.dx[1] = x + (w / 2); feature.sy[0] = feature.sy[2] = y; feature.dy[0] = feature.dy[2] = y + (h / 2); feature.sx[2] = feature.sx[3] = x + (w / 2); feature.dx[2] = feature.dx[3] = x + w; feature.sy[1] = feature.sy[3] = y + (h / 2); feature.dy[1] = feature.dy[3] = y + h; ccv_array_push(features, &feature); } return features; } typedef struct { double value; int index; } ccv_scd_value_index_t; #define more_than(s1, s2, aux) ((s1).value >= (s2).value) static CCV_IMPLEMENT_QSORT(_ccv_scd_value_index_sortby_value, ccv_scd_value_index_t, more_than) #undef more_than #define less_than(s1, s2, aux) ((s1).index < (s2).index) static CCV_IMPLEMENT_QSORT(_ccv_scd_value_index_sortby_index, ccv_scd_value_index_t, less_than) #undef less_than static float* _ccv_scd_get_surf_at(float* fv, int feature_no, int example_no, int positive_count, int negative_count) { return fv + ((off_t)example_no + feature_no * (positive_count + negative_count)) * 32; } static void _ccv_scd_precompute_feature_vectors(const ccv_array_t* features, const ccv_array_t* positives, const ccv_array_t* negatives, float* fv) { parallel_for(i, positives->rnum) { int j; if ((i + 1) % 4031 == 1) FLUSH(CCV_CLI_INFO, " - precompute feature vectors of example %d / %d over %d features", (int)(i + 1), positives->rnum + negatives->rnum, features->rnum); ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(positives, i); a->data.u8 = (unsigned char*)(a + 1); ccv_dense_matrix_t* b = 0; ccv_scd(a, &b, 0); ccv_dense_matrix_t* sat = 0; ccv_sat(b, &sat, 0, CCV_PADDING_ZERO); ccv_matrix_free(b); for (j = 0; j < features->rnum; j++) { ccv_scd_stump_feature_t* feature = (ccv_scd_stump_feature_t*)ccv_array_get(features, j); // save to fv #if defined(HAVE_SSE2) _ccv_scd_run_feature_at_sse2(sat->data.f32, sat->cols, feature, (__m128*)_ccv_scd_get_surf_at(fv, j, i, positives->rnum, negatives->rnum)); #else _ccv_scd_run_feature_at(sat->data.f32, sat->cols, feature, _ccv_scd_get_surf_at(fv, j, i, positives->rnum, negatives->rnum)); #endif } ccv_matrix_free(sat); } parallel_endfor parallel_for(i, negatives->rnum) { int j; if ((i + 1) % 731 == 1 || (i + 1) == negatives->rnum) FLUSH(CCV_CLI_INFO, " - precompute feature vectors of example %d / %d over %d features", (int)(i + positives->rnum + 1), positives->rnum + negatives->rnum, features->rnum); ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(negatives, i); a->data.u8 = (unsigned char*)(a + 1); ccv_dense_matrix_t* b = 0; ccv_scd(a, &b, 0); ccv_dense_matrix_t* sat = 0; ccv_sat(b, &sat, 0, CCV_PADDING_ZERO); ccv_matrix_free(b); for (j = 0; j < features->rnum; j++) { ccv_scd_stump_feature_t* feature = (ccv_scd_stump_feature_t*)ccv_array_get(features, j); // save to fv #if defined(HAVE_SSE2) _ccv_scd_run_feature_at_sse2(sat->data.f32, sat->cols, feature, (__m128*)_ccv_scd_get_surf_at(fv, j, i + positives->rnum, positives->rnum, negatives->rnum)); #else _ccv_scd_run_feature_at(sat->data.f32, sat->cols, feature, _ccv_scd_get_surf_at(fv, j, i + positives->rnum, positives->rnum, negatives->rnum)); #endif } ccv_matrix_free(sat); } parallel_endfor } typedef struct { int feature_no; double C; ccv_scd_value_index_t* pwidx; ccv_scd_value_index_t* nwidx; int positive_count; int negative_count; int active_positive_count; int active_negative_count; float* fv; } ccv_loss_minimize_context_t; static int _ccv_scd_stump_feature_gentle_adaboost_loss(const ccv_dense_matrix_t* x, double* f, ccv_dense_matrix_t* df, void* data) { ccv_loss_minimize_context_t* context = (ccv_loss_minimize_context_t*)data; int i, j; float loss = 0; float* d = df->data.f32; for (i = 0; i < 32; i++) { loss += context->C * fabs(x->data.f32[i]); d[i] = x->data.f32[i] > 0 ? context->C : -context->C; } d[32] = 0; float* surf = _ccv_scd_get_surf_at(context->fv, context->feature_no, 0, context->positive_count, context->negative_count); for (i = 0; i < context->active_positive_count; i++) { float* cur_surf = surf + (off_t)(context->pwidx[i].index) * 32; float v = x->data.f32[32]; for (j = 0; j < 32; j++) v += cur_surf[j] * x->data.f32[j]; v = expf(v); float tanh = (v - 1) / (v + 1); loss += context->pwidx[i].value * (1.0 - tanh) * (1.0 - tanh); float dv = -8.0 * context->pwidx[i].value * v / ((1.0 + v) * (1.0 + v) * (1.0 + v)); for (j = 0; j < 32; j++) d[j] += dv * cur_surf[j]; d[32] += dv; } for (i = 0; i < context->active_negative_count; i++) { float* cur_surf = surf + (off_t)(context->nwidx[i].index + context->positive_count) * 32; float v = x->data.f32[32]; for (j = 0; j < 32; j++) v += cur_surf[j] * x->data.f32[j]; v = expf(v); float tanh = (v - 1) / (v + 1); loss += context->nwidx[i].value * (-1.0 - tanh) * (-1.0 - tanh); float dv = 8.0 * context->nwidx[i].value * v * v / ((1.0 + v) * (1.0 + v) * (1.0 + v)); for (j = 0; j < 32; j++) d[j] += dv * cur_surf[j]; d[32] += dv; } f[0] = loss; return 0; } static int _ccv_scd_weight_trimming(ccv_scd_value_index_t* idx, int count, double weight_trimming) { int active_count = count; int i; double w = 0; for (i = 0; i < count; i++) { w += idx[i].value; if (w >= weight_trimming) { active_count = i + 1; break; } } assert(active_count > 0); for (i = active_count; i < count; i++) if (idx[i - 1].value == idx[i].value) // for exactly the same weight, we skip active_count = i + 1; else break; return active_count; } static void _ccv_scd_stump_feature_supervised_train(gsl_rng* rng, ccv_array_t* features, int positive_count, int negative_count, double* pw, double* nw, float* fv, double C, double weight_trimming) { int i; ccv_scd_value_index_t* pwidx = (ccv_scd_value_index_t*)ccmalloc(sizeof(ccv_scd_value_index_t) * positive_count); ccv_scd_value_index_t* nwidx = (ccv_scd_value_index_t*)ccmalloc(sizeof(ccv_scd_value_index_t) * negative_count); for (i = 0; i < positive_count; i++) pwidx[i].value = pw[i], pwidx[i].index = i; for (i = 0; i < negative_count; i++) nwidx[i].value = nw[i], nwidx[i].index = i; _ccv_scd_value_index_sortby_value(pwidx, positive_count, 0); _ccv_scd_value_index_sortby_value(nwidx, negative_count, 0); int active_positive_count = _ccv_scd_weight_trimming(pwidx, positive_count, weight_trimming * 0.5); // the sum of positive weights is 0.5 int active_negative_count = _ccv_scd_weight_trimming(nwidx, negative_count, weight_trimming * 0.5); // the sum of negative weights is 0.5 _ccv_scd_value_index_sortby_index(pwidx, active_positive_count, 0); _ccv_scd_value_index_sortby_index(nwidx, active_negative_count, 0); parallel_for(i, features->rnum) { if ((i + 1) % 31 == 1 || (i + 1) == features->rnum) FLUSH(CCV_CLI_INFO, " - supervised train feature %d / %d with logistic regression, active set {%d, %d}", (int)(i + 1), features->rnum, active_positive_count, active_negative_count); ccv_scd_stump_feature_t* feature = (ccv_scd_stump_feature_t*)ccv_array_get(features, i); ccv_loss_minimize_context_t context = { .feature_no = i, .C = C, .positive_count = positive_count, .negative_count = negative_count, .active_positive_count = active_positive_count, .active_negative_count = active_negative_count, .pwidx = pwidx, .nwidx = nwidx, .fv = fv, }; ccv_dense_matrix_t* x = ccv_dense_matrix_new(1, 33, CCV_32F | CCV_C1, 0, 0); int j; for (j = 0; j < 33; j++) x->data.f32[j] = gsl_rng_uniform_pos(rng) * 2 - 1.0; ccv_minimize(x, 10, 1.0, _ccv_scd_stump_feature_gentle_adaboost_loss, ccv_minimize_default_params, &context); for (j = 0; j < 32; j++) feature->w[j] = x->data.f32[j]; feature->bias = x->data.f32[32]; ccv_matrix_free(x); } parallel_endfor ccfree(pwidx); ccfree(nwidx); } static double _ccv_scd_auc(double* s, int posnum, int negnum) { ccv_scd_value_index_t* sidx = (ccv_scd_value_index_t*)ccmalloc(sizeof(ccv_scd_value_index_t) * (posnum + negnum)); int i; for (i = 0; i < posnum + negnum; i++) sidx[i].value = s[i], sidx[i].index = i; _ccv_scd_value_index_sortby_value(sidx, posnum + negnum, 0); int fp = 0, tp = 0, fp_prev = 0, tp_prev = 0; double a = 0; double f_prev = -DBL_MAX; for (i = 0; i < posnum + negnum; i++) { if (sidx[i].value != f_prev) { a += (double)(fp - fp_prev) * (tp + tp_prev) * 0.5; f_prev = sidx[i].value; fp_prev = fp; tp_prev = tp; } if (sidx[i].index < posnum) ++tp; else ++fp; } ccfree(sidx); a += (double)(negnum - fp_prev) * (posnum + tp_prev) * 0.5; return a / ((double)posnum * negnum); } static int _ccv_scd_find_match_feature(ccv_scd_stump_feature_t* value, ccv_array_t* features) { int i; for (i = 0; i < features->rnum; i++) { ccv_scd_stump_feature_t* feature = (ccv_scd_stump_feature_t*)ccv_array_get(features, i); if (feature->sx[0] == value->sx[0] && feature->sy[0] == value->sy[0] && feature->dx[0] == value->dx[0] && feature->dy[0] == value->dy[0] && feature->sx[1] == value->sx[1] && feature->sy[1] == value->sy[1] && feature->dx[1] == value->dx[1] && feature->dy[1] == value->dy[1] && feature->sx[2] == value->sx[2] && feature->sy[2] == value->sy[2] && feature->dx[2] == value->dx[2] && feature->dy[2] == value->dy[2] && feature->sx[3] == value->sx[3] && feature->sy[3] == value->sy[3] && feature->dx[3] == value->dx[3] && feature->dy[3] == value->dy[3]) return i; } return -1; } static int _ccv_scd_best_feature_gentle_adaboost(double* s, ccv_array_t* features, double* pw, double* nw, int positive_count, int negative_count, float* fv) { int i; double* error_rate = (double*)cccalloc(features->rnum, sizeof(double)); assert(positive_count + negative_count > 0); parallel_for(i, features->rnum) { int j, k; if ((i + 1) % 331 == 1 || (i + 1) == features->rnum) FLUSH(CCV_CLI_INFO, " - go through %d / %d (%.1f%%) for adaboost", (int)(i + 1), features->rnum, (float)(i + 1) * 100 / features->rnum); ccv_scd_stump_feature_t* feature = (ccv_scd_stump_feature_t*)ccv_array_get(features, i); for (j = 0; j < positive_count; j++) { float* surf = _ccv_scd_get_surf_at(fv, i, j, positive_count, negative_count); float v = feature->bias; for (k = 0; k < 32; k++) v += surf[k] * feature->w[k]; v = expf(v); v = (v - 1) / (v + 1); // probability error_rate[i] += pw[j] * (1 - v) * (1 - v); } for (j = 0; j < negative_count; j++) { float* surf = _ccv_scd_get_surf_at(fv, i, j + positive_count, positive_count, negative_count); float v = feature->bias; for (k = 0; k < 32; k++) v += surf[k] * feature->w[k]; v = expf(v); v = (v - 1) / (v + 1); // probability error_rate[i] += nw[j] * (-1 - v) * (-1 - v); } } parallel_endfor double min_error_rate = error_rate[0]; int j = 0; for (i = 1; i < features->rnum; i++) if (error_rate[i] < min_error_rate) { min_error_rate = error_rate[i]; j = i; } ccfree(error_rate); return j; } static float _ccv_scd_threshold_at_hit_rate(double* s, int posnum, int negnum, float hit_rate, float* tp_out, float* fp_out) { ccv_scd_value_index_t* psidx = (ccv_scd_value_index_t*)ccmalloc(sizeof(ccv_scd_value_index_t) * posnum); int i; for (i = 0; i < posnum; i++) psidx[i].value = s[i], psidx[i].index = i; _ccv_scd_value_index_sortby_value(psidx, posnum, 0); float threshold = psidx[(int)((posnum - 0.5) * hit_rate - 0.5)].value - 1e-6; ccfree(psidx); int tp = 0; for (i = 0; i < posnum; i++) if (s[i] > threshold) ++tp; int fp = 0; for (i = 0; i < negnum; i++) if (s[i + posnum] > threshold) ++fp; if (tp_out) *tp_out = (float)tp / posnum; if (fp_out) *fp_out = (float)fp / negnum; return threshold; } static int _ccv_scd_classifier_cascade_pass(ccv_scd_classifier_cascade_t* cascade, ccv_dense_matrix_t* a) { #if defined(HAVE_SSE2) __m128 surf[8]; #else float surf[32]; #endif ccv_dense_matrix_t* b = 0; ccv_scd(a, &b, 0); ccv_dense_matrix_t* sat = 0; ccv_sat(b, &sat, 0, CCV_PADDING_ZERO); ccv_matrix_free(b); int pass = 1; int i, j; for (i = 0; i < cascade->count; i++) { ccv_scd_stump_classifier_t* classifier = cascade->classifiers + i; float v = 0; for (j = 0; j < classifier->count; j++) { ccv_scd_stump_feature_t* feature = classifier->features + j; #if defined(HAVE_SSE2) _ccv_scd_run_feature_at_sse2(sat->data.f32, sat->cols, feature, surf); __m128 u0 = _mm_add_ps(_mm_mul_ps(surf[0], _mm_loadu_ps(feature->w)), _mm_mul_ps(surf[1], _mm_loadu_ps(feature->w + 4))); __m128 u1 = _mm_add_ps(_mm_mul_ps(surf[2], _mm_loadu_ps(feature->w + 8)), _mm_mul_ps(surf[3], _mm_loadu_ps(feature->w + 12))); __m128 u2 = _mm_add_ps(_mm_mul_ps(surf[4], _mm_loadu_ps(feature->w + 16)), _mm_mul_ps(surf[5], _mm_loadu_ps(feature->w + 20))); __m128 u3 = _mm_add_ps(_mm_mul_ps(surf[6], _mm_loadu_ps(feature->w + 24)), _mm_mul_ps(surf[7], _mm_loadu_ps(feature->w + 28))); u0 = _mm_add_ps(u0, u1); u2 = _mm_add_ps(u2, u3); union { float f[4]; __m128 p; } ux; ux.p = _mm_add_ps(u0, u2); float u = expf(feature->bias + ux.f[0] + ux.f[1] + ux.f[2] + ux.f[3]); #else _ccv_scd_run_feature_at(sat->data.f32, sat->cols, feature, surf); float u = feature->bias; int k; for (k = 0; k < 32; k++) u += surf[k] * feature->w[k]; u = expf(u); #endif v += (u - 1) / (u + 1); } if (v <= classifier->threshold) { pass = 0; break; } } ccv_matrix_free(sat); return pass; } static ccv_array_t* _ccv_scd_hard_mining(gsl_rng* rng, ccv_scd_classifier_cascade_t* cascade, ccv_array_t* hard_mine, ccv_array_t* negatives, int negative_count, int grayscale, int even_dist) { ccv_array_t* hard_negatives = ccv_array_new(ccv_compute_dense_matrix_size(cascade->size.height, cascade->size.width, CCV_8U | (grayscale ? CCV_C1 : CCV_C3)), negative_count, 0); int i, j, t; for (i = 0; i < negatives->rnum; i++) { ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(negatives, i); a->data.u8 = (unsigned char*)(a + 1); if (_ccv_scd_classifier_cascade_pass(cascade, a)) ccv_array_push(hard_negatives, a); } int n_per_mine = ccv_max((negative_count - hard_negatives->rnum) / hard_mine->rnum, 10); // the hard mining comes in following fashion: // 1). original, with n_per_mine set; // 2). horizontal flip, with n_per_mine set; // 3). vertical flip, with n_per_mine set; // 4). 180 rotation, with n_per_mine set; // 5~8). repeat above, but with no n_per_mine set; // after above, if we still cannot collect enough, so be it. for (t = (even_dist ? 0 : 4); t < 8 /* exhausted all variations */ && hard_negatives->rnum < negative_count; t++) { for (i = 0; i < hard_mine->rnum; i++) { FLUSH(CCV_CLI_INFO, " - hard mine negatives %d%% with %d-th permutation", 100 * hard_negatives->rnum / negative_count, t + 1); ccv_file_info_t* file_info = (ccv_file_info_t*)ccv_array_get(hard_mine, i); ccv_dense_matrix_t* image = 0; ccv_read(file_info->filename, &image, CCV_IO_ANY_FILE | (grayscale ? CCV_IO_GRAY : CCV_IO_RGB_COLOR)); if (image == 0) { PRINT(CCV_CLI_ERROR, "\n - %s: cannot be open, possibly corrupted\n", file_info->filename); continue; } if (t % 2 != 0) ccv_flip(image, 0, 0, CCV_FLIP_X); if (t % 4 >= 2) ccv_flip(image, 0, 0, CCV_FLIP_Y); if (t >= 4) n_per_mine = negative_count; // no hard limit on n_per_mine anymore for the last pass ccv_scd_param_t params = { .interval = 3, .min_neighbors = 0, .step_through = 4, .size = cascade->size, }; ccv_array_t* objects = ccv_scd_detect_objects(image, &cascade, 1, params); if (objects->rnum > 0) { gsl_ran_shuffle(rng, objects->data, objects->rnum, objects->rsize); for (j = 0; j < ccv_min(objects->rnum, n_per_mine); j++) { ccv_rect_t* rect = (ccv_rect_t*)ccv_array_get(objects, j); if (rect->x < 0 || rect->y < 0 || rect->x + rect->width > image->cols || rect->y + rect->height > image->rows) continue; ccv_dense_matrix_t* sliced = 0; ccv_slice(image, (ccv_matrix_t**)&sliced, 0, rect->y, rect->x, rect->height, rect->width); ccv_dense_matrix_t* resized = 0; assert(sliced->rows >= cascade->size.height && sliced->cols >= cascade->size.width); if (sliced->rows > cascade->size.height || sliced->cols > cascade->size.width) { ccv_resample(sliced, &resized, 0, cascade->size.height, cascade->size.width, CCV_INTER_CUBIC); ccv_matrix_free(sliced); } else { resized = sliced; } if (_ccv_scd_classifier_cascade_pass(cascade, resized)) ccv_array_push(hard_negatives, resized); ccv_matrix_free(resized); if (hard_negatives->rnum >= negative_count) break; } } ccv_matrix_free(image); if (hard_negatives->rnum >= negative_count) break; } } FLUSH(CCV_CLI_INFO, " - hard mine negatives : %d\n", hard_negatives->rnum); ccv_make_array_immutable(hard_negatives); return hard_negatives; } typedef struct { ccv_function_state_reserve_field; int t, k; uint64_t array_signature; ccv_array_t* features; ccv_array_t* positives; ccv_array_t* negatives; double* s; double* pw; double* nw; float* fv; // feature vector for examples * feature double auc_prev; double accu_true_positive_rate; double accu_false_positive_rate; ccv_scd_classifier_cascade_t* cascade; ccv_scd_train_param_t params; } ccv_scd_classifier_cascade_new_function_state_t; static void _ccv_scd_classifier_cascade_new_function_state_read(const char* filename, ccv_scd_classifier_cascade_new_function_state_t* z) { ccv_scd_classifier_cascade_t* cascade = ccv_scd_classifier_cascade_read(filename); if (!cascade) return; if (z->cascade) ccv_scd_classifier_cascade_free(z->cascade); z->cascade = cascade; assert(z->cascade->size.width == z->params.size.width); assert(z->cascade->size.height == z->params.size.height); sqlite3* db = 0; if (SQLITE_OK == sqlite3_open(filename, &db)) { const char negative_data_qs[] = "SELECT data, rnum, rsize FROM negative_data WHERE id=0;"; sqlite3_stmt* negative_data_stmt = 0; if (SQLITE_OK == sqlite3_prepare_v2(db, negative_data_qs, sizeof(negative_data_qs), &negative_data_stmt, 0)) { if (sqlite3_step(negative_data_stmt) == SQLITE_ROW) { int rsize = ccv_compute_dense_matrix_size(z->cascade->size.height, z->cascade->size.width, CCV_8U | (z->params.grayscale ? CCV_C1 : CCV_C3)); int rnum = sqlite3_column_int(negative_data_stmt, 1); assert(sqlite3_column_int(negative_data_stmt, 2) == rsize); size_t size = sqlite3_column_bytes(negative_data_stmt, 0); assert(size == (size_t)rsize * rnum); if (z->negatives) ccv_array_clear(z->negatives); else z->negatives = ccv_array_new(rsize, rnum, 0); int i; const uint8_t* data = (const uint8_t*)sqlite3_column_blob(negative_data_stmt, 0); for (i = 0; i < rnum; i++) ccv_array_push(z->negatives, data + (off_t)i * rsize); ccv_make_array_immutable(z->negatives); z->array_signature = z->negatives->sig; } sqlite3_finalize(negative_data_stmt); } const char function_state_qs[] = "SELECT t, k, positive_count, auc_prev, " // 4 "accu_true_positive_rate, accu_false_positive_rate, " // 6 "line_no, s, pw, nw FROM function_state WHERE fsid = 0;"; // 10 sqlite3_stmt* function_state_stmt = 0; if (SQLITE_OK == sqlite3_prepare_v2(db, function_state_qs, sizeof(function_state_qs), &function_state_stmt, 0)) { if (sqlite3_step(function_state_stmt) == SQLITE_ROW) { z->t = sqlite3_column_int(function_state_stmt, 0); z->k = sqlite3_column_int(function_state_stmt, 1); int positive_count = sqlite3_column_int(function_state_stmt, 2); assert(positive_count == z->positives->rnum); z->auc_prev = sqlite3_column_double(function_state_stmt, 3); z->accu_true_positive_rate = sqlite3_column_double(function_state_stmt, 4); z->accu_false_positive_rate = sqlite3_column_double(function_state_stmt, 5); z->line_no = sqlite3_column_int(function_state_stmt, 6); size_t size = sqlite3_column_bytes(function_state_stmt, 7); const void* s = sqlite3_column_blob(function_state_stmt, 7); memcpy(z->s, s, size); size = sqlite3_column_bytes(function_state_stmt, 8); const void* pw = sqlite3_column_blob(function_state_stmt, 8); memcpy(z->pw, pw, size); size = sqlite3_column_bytes(function_state_stmt, 9); const void* nw = sqlite3_column_blob(function_state_stmt, 9); memcpy(z->nw, nw, size); } sqlite3_finalize(function_state_stmt); } _ccv_scd_precompute_feature_vectors(z->features, z->positives, z->negatives, z->fv); sqlite3_close(db); } } static void _ccv_scd_classifier_cascade_new_function_state_write(ccv_scd_classifier_cascade_new_function_state_t* z, const char* filename) { ccv_scd_classifier_cascade_write(z->cascade, filename); sqlite3* db = 0; if (SQLITE_OK == sqlite3_open(filename, &db)) { const char function_state_create_table_qs[] = "CREATE TABLE IF NOT EXISTS function_state " "(fsid INTEGER PRIMARY KEY ASC, t INTEGER, k INTEGER, positive_count INTEGER, auc_prev DOUBLE, accu_true_positive_rate DOUBLE, accu_false_positive_rate DOUBLE, line_no INTEGER, s BLOB, pw BLOB, nw BLOB);" "CREATE TABLE IF NOT EXISTS negative_data " "(id INTEGER PRIMARY KEY ASC, data BLOB, rnum INTEGER, rsize INTEGER);"; assert(SQLITE_OK == sqlite3_exec(db, function_state_create_table_qs, 0, 0, 0)); const char function_state_insert_qs[] = "REPLACE INTO function_state " "(fsid, t, k, positive_count, auc_prev, accu_true_positive_rate, accu_false_positive_rate, line_no, s, pw, nw) VALUES " "(0, $t, $k, $positive_count, $auc_prev, $accu_true_positive_rate, $accu_false_positive_rate, $line_no, $s, $pw, $nw);"; sqlite3_stmt* function_state_insert_stmt = 0; assert(SQLITE_OK == sqlite3_prepare_v2(db, function_state_insert_qs, sizeof(function_state_insert_qs), &function_state_insert_stmt, 0)); sqlite3_bind_int(function_state_insert_stmt, 1, z->t); sqlite3_bind_int(function_state_insert_stmt, 2, z->k); sqlite3_bind_int(function_state_insert_stmt, 3, z->positives->rnum); sqlite3_bind_double(function_state_insert_stmt, 4, z->auc_prev); sqlite3_bind_double(function_state_insert_stmt, 5, z->accu_true_positive_rate); sqlite3_bind_double(function_state_insert_stmt, 6, z->accu_false_positive_rate); sqlite3_bind_int(function_state_insert_stmt, 7, z->line_no); sqlite3_bind_blob(function_state_insert_stmt, 8, z->s, sizeof(double) * (z->positives->rnum + z->negatives->rnum), SQLITE_STATIC); sqlite3_bind_blob(function_state_insert_stmt, 9, z->pw, sizeof(double) * z->positives->rnum, SQLITE_STATIC); sqlite3_bind_blob(function_state_insert_stmt, 10, z->nw, sizeof(double) * z->negatives->rnum, SQLITE_STATIC); assert(SQLITE_DONE == sqlite3_step(function_state_insert_stmt)); sqlite3_finalize(function_state_insert_stmt); if (z->array_signature != z->negatives->sig) { const char negative_data_insert_qs[] = "REPLACE INTO negative_data " "(id, data, rnum, rsize) VALUES (0, $data, $rnum, $rsize);"; sqlite3_stmt* negative_data_insert_stmt = 0; assert(SQLITE_OK == sqlite3_prepare_v2(db, negative_data_insert_qs, sizeof(negative_data_insert_qs), &negative_data_insert_stmt, 0)); sqlite3_bind_blob(negative_data_insert_stmt, 1, z->negatives->data, z->negatives->rsize * z->negatives->rnum, SQLITE_STATIC); sqlite3_bind_int(negative_data_insert_stmt, 2, z->negatives->rnum); sqlite3_bind_int(negative_data_insert_stmt, 3, z->negatives->rsize); assert(SQLITE_DONE == sqlite3_step(negative_data_insert_stmt)); sqlite3_finalize(negative_data_insert_stmt); z->array_signature = z->negatives->sig; } sqlite3_close(db); } } #endif ccv_scd_classifier_cascade_t* ccv_scd_classifier_cascade_new(ccv_array_t* posfiles, ccv_array_t* hard_mine, int negative_count, const char* filename, ccv_scd_train_param_t params) { #ifdef HAVE_GSL assert(posfiles->rnum > 0); assert(hard_mine->rnum > 0); gsl_rng_env_setup(); gsl_rng* rng = gsl_rng_alloc(gsl_rng_default); ccv_scd_classifier_cascade_new_function_state_t z = {0}; z.features = _ccv_scd_stump_features(params.feature.base, params.feature.range_through, params.feature.step_through, params.size); PRINT(CCV_CLI_INFO, " - using %d features\n", z.features->rnum); int i, j, p, q; z.positives = _ccv_scd_collect_positives(params.size, posfiles, params.grayscale); double* h = (double*)ccmalloc(sizeof(double) * (z.positives->rnum + negative_count)); z.s = (double*)ccmalloc(sizeof(double) * (z.positives->rnum + negative_count)); assert(z.s); z.pw = (double*)ccmalloc(sizeof(double) * z.positives->rnum); assert(z.pw); z.nw = (double*)ccmalloc(sizeof(double) * negative_count); assert(z.nw); ccmemalign((void**)&z.fv, 16, sizeof(float) * (z.positives->rnum + negative_count) * z.features->rnum * 32); assert(z.fv); z.params = params; ccv_function_state_begin(_ccv_scd_classifier_cascade_new_function_state_read, z, filename); z.negatives = _ccv_scd_collect_negatives(rng, params.size, hard_mine, negative_count, params.grayscale); _ccv_scd_precompute_feature_vectors(z.features, z.positives, z.negatives, z.fv); z.cascade = (ccv_scd_classifier_cascade_t*)ccmalloc(sizeof(ccv_scd_classifier_cascade_t)); z.cascade->margin = ccv_margin(0, 0, 0, 0); z.cascade->size = params.size; z.cascade->count = 0; z.cascade->classifiers = 0; z.accu_true_positive_rate = 1; z.accu_false_positive_rate = 1; ccv_function_state_resume(_ccv_scd_classifier_cascade_new_function_state_write, z, filename); for (z.t = 0; z.t < params.boosting; z.t++) { for (i = 0; i < z.positives->rnum; i++) z.pw[i] = 0.5 / z.positives->rnum; for (i = 0; i < z.negatives->rnum; i++) z.nw[i] = 0.5 / z.negatives->rnum; memset(z.s, 0, sizeof(double) * (z.positives->rnum + z.negatives->rnum)); z.cascade->classifiers = (ccv_scd_stump_classifier_t*)ccrealloc(z.cascade->classifiers, sizeof(ccv_scd_stump_classifier_t) * (z.t + 1)); z.cascade->count = z.t + 1; z.cascade->classifiers[z.t].threshold = 0; z.cascade->classifiers[z.t].features = 0; z.cascade->classifiers[z.t].count = 0; z.auc_prev = 0; assert(z.positives->rnum > 0 && z.negatives->rnum > 0); // for the first prune stages, we have more restrictive number of features (faster) for (z.k = 0; z.k < (z.t < params.stop_criteria.prune_stage ? params.stop_criteria.prune_feature : params.stop_criteria.maximum_feature); z.k++) { ccv_scd_stump_classifier_t* classifier = z.cascade->classifiers + z.t; classifier->features = (ccv_scd_stump_feature_t*)ccrealloc(classifier->features, sizeof(ccv_scd_stump_feature_t) * (z.k + 1)); _ccv_scd_stump_feature_supervised_train(rng, z.features, z.positives->rnum, z.negatives->rnum, z.pw, z.nw, z.fv, params.C, params.weight_trimming); int best_feature_no = _ccv_scd_best_feature_gentle_adaboost(z.s, z.features, z.pw, z.nw, z.positives->rnum, z.negatives->rnum, z.fv); ccv_scd_stump_feature_t best_feature = *(ccv_scd_stump_feature_t*)ccv_array_get(z.features, best_feature_no); for (i = 0; i < z.positives->rnum + z.negatives->rnum; i++) { float* surf = _ccv_scd_get_surf_at(z.fv, best_feature_no, i, z.positives->rnum, z.negatives->rnum); float v = best_feature.bias; for (j = 0; j < 32; j++) v += best_feature.w[j] * surf[j]; v = expf(v); h[i] = (v - 1) / (v + 1); } // compute the total score so far for (i = 0; i < z.positives->rnum + z.negatives->rnum; i++) z.s[i] += h[i]; // compute AUC double auc = _ccv_scd_auc(z.s, z.positives->rnum, z.negatives->rnum); float true_positive_rate = 0; float false_positive_rate = 0; // compute true positive / false positive rate _ccv_scd_threshold_at_hit_rate(z.s, z.positives->rnum, z.negatives->rnum, params.stop_criteria.hit_rate, &true_positive_rate, &false_positive_rate); FLUSH(CCV_CLI_INFO, " - at %d-th iteration, auc: %lf, TP rate: %f, FP rate: %f\n", z.k + 1, auc, true_positive_rate, false_positive_rate); PRINT(CCV_CLI_INFO, " --- pick feature %s @ (%d, %d, %d, %d)\n", ((best_feature.dy[3] == best_feature.dy[0] ? "4x1" : (best_feature.dx[3] == best_feature.dx[0] ? "1x4" : "2x2"))), best_feature.sx[0], best_feature.sy[0], best_feature.dx[3], best_feature.dy[3]); classifier->features[z.k] = best_feature; classifier->count = z.k + 1; double auc_prev = z.auc_prev; z.auc_prev = auc; // auc stop to improve, as well as the false positive rate goal reach, at that point, we stop if (auc - auc_prev < params.stop_criteria.auc_crit && false_positive_rate < params.stop_criteria.false_positive_rate) break; // re-weight, with Gentle AdaBoost for (i = 0; i < z.positives->rnum; i++) z.pw[i] *= exp(-h[i]); for (i = 0; i < z.negatives->rnum; i++) z.nw[i] *= exp(h[i + z.positives->rnum]); // re-normalize double w = 0; for (i = 0; i < z.positives->rnum; i++) w += z.pw[i]; w = 0.5 / w; for (i = 0; i < z.positives->rnum; i++) z.pw[i] *= w; w = 0; for (i = 0; i < z.negatives->rnum; i++) w += z.nw[i]; w = 0.5 / w; for (i = 0; i < z.negatives->rnum; i++) z.nw[i] *= w; ccv_function_state_resume(_ccv_scd_classifier_cascade_new_function_state_write, z, filename); } // backtrack removal while (z.cascade->classifiers[z.t].count > 1) { double max_auc = 0; p = -1; for (i = 0; i < z.cascade->classifiers[z.t].count; i++) { ccv_scd_stump_feature_t* feature = z.cascade->classifiers[z.t].features + i; int k = _ccv_scd_find_match_feature(feature, z.features); assert(k >= 0); for (j = 0; j < z.positives->rnum + z.negatives->rnum; j++) { float* surf = _ccv_scd_get_surf_at(z.fv, k, j, z.positives->rnum, z.negatives->rnum); float v = feature->bias; for (q = 0; q < 32; q++) v += feature->w[q]* surf[q]; v = expf(v); h[j] = z.s[j] - (v - 1) / (v + 1); } double auc = _ccv_scd_auc(h, z.positives->rnum, z.negatives->rnum); FLUSH(CCV_CLI_INFO, " - attempting without %d-th feature, auc: %lf", i + 1, auc); if (auc >= max_auc) max_auc = auc, p = i; } if (max_auc >= z.auc_prev) { FLUSH(CCV_CLI_INFO, " - remove %d-th feature with new auc %lf\n", p + 1, max_auc); ccv_scd_stump_feature_t* feature = z.cascade->classifiers[z.t].features + p; int k = _ccv_scd_find_match_feature(feature, z.features); assert(k >= 0); for (j = 0; j < z.positives->rnum + z.negatives->rnum; j++) { float* surf = _ccv_scd_get_surf_at(z.fv, k, j, z.positives->rnum, z.negatives->rnum); float v = feature->bias; for (q = 0; q < 32; q++) v += feature->w[q] * surf[q]; v = expf(v); z.s[j] -= (v - 1) / (v + 1); } z.auc_prev = _ccv_scd_auc(z.s, z.positives->rnum, z.negatives->rnum); --z.cascade->classifiers[z.t].count; if (p < z.cascade->classifiers[z.t].count) memmove(z.cascade->classifiers[z.t].features + p + 1, z.cascade->classifiers[z.t].features + p, sizeof(ccv_scd_stump_feature_t) * (z.cascade->classifiers[z.t].count - p)); } else break; } float true_positive_rate = 0; float false_positive_rate = 0; z.cascade->classifiers[z.t].threshold = _ccv_scd_threshold_at_hit_rate(z.s, z.positives->rnum, z.negatives->rnum, params.stop_criteria.hit_rate, &true_positive_rate, &false_positive_rate); z.accu_true_positive_rate *= true_positive_rate; z.accu_false_positive_rate *= false_positive_rate; FLUSH(CCV_CLI_INFO, " - %d-th stage classifier TP rate : %f, FP rate : %f, ATP rate : %lf, AFP rate : %lg, at threshold : %f\n", z.t + 1, true_positive_rate, false_positive_rate, z.accu_true_positive_rate, z.accu_false_positive_rate, z.cascade->classifiers[z.t].threshold); if (z.accu_false_positive_rate < params.stop_criteria.accu_false_positive_rate) break; ccv_function_state_resume(_ccv_scd_classifier_cascade_new_function_state_write, z, filename); if (z.t < params.boosting - 1) { int pass = 0; for (i = 0; i < z.positives->rnum; i++) { ccv_dense_matrix_t* a = (ccv_dense_matrix_t*)ccv_array_get(z.positives, i); a->data.u8 = (unsigned char*)(a + 1); if (_ccv_scd_classifier_cascade_pass(z.cascade, a)) ++pass; } PRINT(CCV_CLI_INFO, " - %d-th stage classifier TP rate (with pass) : %f\n", z.t + 1, (float)pass / z.positives->rnum); ccv_array_t* hard_negatives = _ccv_scd_hard_mining(rng, z.cascade, hard_mine, z.negatives, negative_count, params.grayscale, z.t < params.stop_criteria.prune_stage /* try to balance even distribution among negatives when we are in prune stage */); ccv_array_free(z.negatives); z.negatives = hard_negatives; _ccv_scd_precompute_feature_vectors(z.features, z.positives, z.negatives, z.fv); } ccv_function_state_resume(_ccv_scd_classifier_cascade_new_function_state_write, z, filename); } ccv_array_free(z.negatives); ccv_function_state_finish(); ccv_array_free(z.features); ccv_array_free(z.positives); ccfree(h); ccfree(z.s); ccfree(z.pw); ccfree(z.nw); ccfree(z.fv); gsl_rng_free(rng); return z.cascade; #else assert(0 && "ccv_scd_classifier_cascade_new requires GSL library and support"); return 0; #endif } void ccv_scd_classifier_cascade_write(ccv_scd_classifier_cascade_t* cascade, const char* filename) { sqlite3* db = 0; if (SQLITE_OK == sqlite3_open(filename, &db)) { const char create_table_qs[] = "CREATE TABLE IF NOT EXISTS cascade_params " "(id INTEGER PRIMARY KEY ASC, count INTEGER, " "margin_left INTEGER, margin_top INTEGER, margin_right INTEGER, margin_bottom INTEGER, " "size_width INTEGER, size_height INTEGER);" "CREATE TABLE IF NOT EXISTS classifier_params " "(classifier INTEGER PRIMARY KEY ASC, count INTEGER, threshold DOUBLE);" "CREATE TABLE IF NOT EXISTS feature_params " "(classifier INTEGER, id INTEGER, " "sx_0 INTEGER, sy_0 INTEGER, dx_0 INTEGER, dy_0 INTEGER, " "sx_1 INTEGER, sy_1 INTEGER, dx_1 INTEGER, dy_1 INTEGER, " "sx_2 INTEGER, sy_2 INTEGER, dx_2 INTEGER, dy_2 INTEGER, " "sx_3 INTEGER, sy_3 INTEGER, dx_3 INTEGER, dy_3 INTEGER, " "bias DOUBLE, w BLOB, UNIQUE (classifier, id));"; assert(SQLITE_OK == sqlite3_exec(db, create_table_qs, 0, 0, 0)); const char cascade_params_insert_qs[] = "REPLACE INTO cascade_params " "(id, count, " "margin_left, margin_top, margin_right, margin_bottom, " "size_width, size_height) VALUES " "(0, $count, " // 0 "$margin_left, $margin_top, $margin_bottom, $margin_right, " // 4 "$size_width, $size_height);"; // 6 sqlite3_stmt* cascade_params_insert_stmt = 0; assert(SQLITE_OK == sqlite3_prepare_v2(db, cascade_params_insert_qs, sizeof(cascade_params_insert_qs), &cascade_params_insert_stmt, 0)); sqlite3_bind_int(cascade_params_insert_stmt, 1, cascade->count); sqlite3_bind_int(cascade_params_insert_stmt, 2, cascade->margin.left); sqlite3_bind_int(cascade_params_insert_stmt, 3, cascade->margin.top); sqlite3_bind_int(cascade_params_insert_stmt, 4, cascade->margin.right); sqlite3_bind_int(cascade_params_insert_stmt, 5, cascade->margin.bottom); sqlite3_bind_int(cascade_params_insert_stmt, 6, cascade->size.width); sqlite3_bind_int(cascade_params_insert_stmt, 7, cascade->size.height); assert(SQLITE_DONE == sqlite3_step(cascade_params_insert_stmt)); sqlite3_finalize(cascade_params_insert_stmt); const char classifier_params_insert_qs[] = "REPLACE INTO classifier_params " "(classifier, count, threshold) VALUES " "($classifier, $count, $threshold);"; sqlite3_stmt* classifier_params_insert_stmt = 0; assert(SQLITE_OK == sqlite3_prepare_v2(db, classifier_params_insert_qs, sizeof(classifier_params_insert_qs), &classifier_params_insert_stmt, 0)); const char feature_params_insert_qs[] = "REPLACE INTO feature_params " "(classifier, id, " "sx_0, sy_0, dx_0, dy_0, " "sx_1, sy_1, dx_1, dy_1, " "sx_2, sy_2, dx_2, dy_2, " "sx_3, sy_3, dx_3, dy_3, " "bias, w) VALUES " "($classifier, $id, " // 1 "$sx_0, $sy_0, $dx_0, $dy_0, " // 5 "$sx_1, $sy_1, $dx_1, $dy_1, " // 9 "$sx_2, $sy_2, $dx_2, $dy_2, " // 13 "$sx_3, $sy_3, $dx_3, $dy_3, " // 17 "$bias, $w);"; // 19 sqlite3_stmt* feature_params_insert_stmt = 0; assert(SQLITE_OK == sqlite3_prepare_v2(db, feature_params_insert_qs, sizeof(feature_params_insert_qs), &feature_params_insert_stmt, 0)); int i, j, k; for (i = 0; i < cascade->count; i++) { ccv_scd_stump_classifier_t* classifier = cascade->classifiers + i; sqlite3_bind_int(classifier_params_insert_stmt, 1, i); sqlite3_bind_int(classifier_params_insert_stmt, 2, classifier->count); sqlite3_bind_double(classifier_params_insert_stmt, 3, classifier->threshold); assert(SQLITE_DONE == sqlite3_step(classifier_params_insert_stmt)); sqlite3_reset(classifier_params_insert_stmt); sqlite3_clear_bindings(classifier_params_insert_stmt); for (j = 0; j < classifier->count; j++) { ccv_scd_stump_feature_t* feature = classifier->features + j; sqlite3_bind_int(feature_params_insert_stmt, 1, i); sqlite3_bind_int(feature_params_insert_stmt, 2, j); for (k = 0; k < 4; k++) { sqlite3_bind_int(feature_params_insert_stmt, 3 + k * 4, feature->sx[k]); sqlite3_bind_int(feature_params_insert_stmt, 4 + k * 4, feature->sy[k]); sqlite3_bind_int(feature_params_insert_stmt, 5 + k * 4, feature->dx[k]); sqlite3_bind_int(feature_params_insert_stmt, 6 + k * 4, feature->dy[k]); } sqlite3_bind_double(feature_params_insert_stmt, 19, feature->bias); sqlite3_bind_blob(feature_params_insert_stmt, 20, feature->w, sizeof(float) * 32, SQLITE_STATIC); assert(SQLITE_DONE == sqlite3_step(feature_params_insert_stmt)); sqlite3_reset(feature_params_insert_stmt); sqlite3_clear_bindings(feature_params_insert_stmt); } } sqlite3_finalize(classifier_params_insert_stmt); sqlite3_finalize(feature_params_insert_stmt); sqlite3_close(db); } } ccv_scd_classifier_cascade_t* ccv_scd_classifier_cascade_read(const char* filename) { int i; sqlite3* db = 0; ccv_scd_classifier_cascade_t* cascade = 0; if (SQLITE_OK == sqlite3_open(filename, &db)) { const char cascade_params_qs[] = "SELECT count, " // 1 "margin_left, margin_top, margin_right, margin_bottom, " // 5 "size_width, size_height FROM cascade_params WHERE id = 0;"; // 7 sqlite3_stmt* cascade_params_stmt = 0; if (SQLITE_OK == sqlite3_prepare_v2(db, cascade_params_qs, sizeof(cascade_params_qs), &cascade_params_stmt, 0)) { if (sqlite3_step(cascade_params_stmt) == SQLITE_ROW) { cascade = (ccv_scd_classifier_cascade_t*)ccmalloc(sizeof(ccv_scd_classifier_cascade_t)); cascade->count = sqlite3_column_int(cascade_params_stmt, 0); cascade->classifiers = (ccv_scd_stump_classifier_t*)cccalloc(cascade->count, sizeof(ccv_scd_stump_classifier_t)); cascade->margin = ccv_margin(sqlite3_column_int(cascade_params_stmt, 1), sqlite3_column_int(cascade_params_stmt, 2), sqlite3_column_int(cascade_params_stmt, 3), sqlite3_column_int(cascade_params_stmt, 4)); cascade->size = ccv_size(sqlite3_column_int(cascade_params_stmt, 5), sqlite3_column_int(cascade_params_stmt, 6)); } sqlite3_finalize(cascade_params_stmt); } if (cascade) { const char classifier_params_qs[] = "SELECT classifier, count, threshold FROM classifier_params ORDER BY classifier ASC;"; sqlite3_stmt* classifier_params_stmt = 0; if (SQLITE_OK == sqlite3_prepare_v2(db, classifier_params_qs, sizeof(classifier_params_qs), &classifier_params_stmt, 0)) { while (sqlite3_step(classifier_params_stmt) == SQLITE_ROW) if (sqlite3_column_int(classifier_params_stmt, 0) < cascade->count) { ccv_scd_stump_classifier_t* classifier = cascade->classifiers + sqlite3_column_int(classifier_params_stmt, 0); classifier->count = sqlite3_column_int(classifier_params_stmt, 1); classifier->features = (ccv_scd_stump_feature_t*)ccmalloc(sizeof(ccv_scd_stump_feature_t) * classifier->count); classifier->threshold = (float)sqlite3_column_double(classifier_params_stmt, 2); } sqlite3_finalize(classifier_params_stmt); } const char feature_params_qs[] = "SELECT classifier, id, " "sx_0, sy_0, dx_0, dy_0, " "sx_1, sy_1, dx_1, dy_1, " "sx_2, sy_2, dx_2, dy_2, " "sx_3, sy_3, dx_3, dy_3, " "bias, w FROM feature_params ORDER BY classifier, id ASC;"; sqlite3_stmt* feature_params_stmt = 0; if (SQLITE_OK == sqlite3_prepare_v2(db, feature_params_qs, sizeof(feature_params_qs), &feature_params_stmt, 0)) { while (sqlite3_step(feature_params_stmt) == SQLITE_ROW) if (sqlite3_column_int(feature_params_stmt, 0) < cascade->count) { ccv_scd_stump_classifier_t* classifier = cascade->classifiers + sqlite3_column_int(feature_params_stmt, 0); if (sqlite3_column_int(feature_params_stmt, 1) < classifier->count) { ccv_scd_stump_feature_t* feature = classifier->features + sqlite3_column_int(feature_params_stmt, 1); for (i = 0; i < 4; i++) { feature->sx[i] = sqlite3_column_int(feature_params_stmt, 2 + i * 4); feature->sy[i] = sqlite3_column_int(feature_params_stmt, 3 + i * 4); feature->dx[i] = sqlite3_column_int(feature_params_stmt, 4 + i * 4); feature->dy[i] = sqlite3_column_int(feature_params_stmt, 5 + i * 4); } feature->bias = (float)sqlite3_column_double(feature_params_stmt, 18); int wnum = sqlite3_column_bytes(feature_params_stmt, 19); assert(wnum == 32 * sizeof(float)); const void* w = sqlite3_column_blob(feature_params_stmt, 19); memcpy(feature->w, w, sizeof(float) * 32); } } sqlite3_finalize(feature_params_stmt); } } sqlite3_close(db); } return cascade; } void ccv_scd_classifier_cascade_free(ccv_scd_classifier_cascade_t* cascade) { int i; for (i = 0; i < cascade->count; i++) { ccv_scd_stump_classifier_t* classifier = cascade->classifiers + i; ccfree(classifier->features); } ccfree(cascade->classifiers); ccfree(cascade); } static int _ccv_is_equal_same_class(const void* _r1, const void* _r2, void* data) { const ccv_comp_t* r1 = (const ccv_comp_t*)_r1; const ccv_comp_t* r2 = (const ccv_comp_t*)_r2; if (r2->classification.id != r1->classification.id) return 0; int i = ccv_max(ccv_min(r2->rect.x + r2->rect.width, r1->rect.x + r1->rect.width) - ccv_max(r2->rect.x, r1->rect.x), 0) * ccv_max(ccv_min(r2->rect.y + r2->rect.height, r1->rect.y + r1->rect.height) - ccv_max(r2->rect.y, r1->rect.y), 0); int m = ccv_min(r2->rect.width * r2->rect.height, r1->rect.width * r1->rect.height); return i >= 0.3 * m; // IoM > 0.3 like HeadHunter does } ccv_array_t* ccv_scd_detect_objects(ccv_dense_matrix_t* a, ccv_scd_classifier_cascade_t** cascades, int count, ccv_scd_param_t params) { int i, j, k, x, y, p, q; int scale_upto = 1; float up_ratio = 1.0; for (i = 0; i < count; i++) up_ratio = ccv_max(up_ratio, ccv_max((float)cascades[i]->size.width / params.size.width, (float)cascades[i]->size.height / params.size.height)); if (up_ratio - 1.0 > 1e-4) { ccv_dense_matrix_t* resized = 0; ccv_resample(a, &resized, 0, (int)(a->rows * up_ratio + 0.5), (int)(a->cols * up_ratio + 0.5), CCV_INTER_CUBIC); a = resized; } for (i = 0; i < count; i++) scale_upto = ccv_max(scale_upto, (int)(log(ccv_min((double)a->rows / (cascades[i]->size.height - cascades[i]->margin.top - cascades[i]->margin.bottom), (double)a->cols / (cascades[i]->size.width - cascades[i]->margin.left - cascades[i]->margin.right))) / log(2.) - DBL_MIN) + 1); ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca(sizeof(ccv_dense_matrix_t*) * scale_upto); pyr[0] = a; for (i = 1; i < scale_upto; i++) { pyr[i] = 0; ccv_sample_down(pyr[i - 1], &pyr[i], 0, 0, 0); } #if defined(HAVE_SSE2) __m128 surf[8]; #else float surf[32]; #endif ccv_array_t** seq = (ccv_array_t**)alloca(sizeof(ccv_array_t*) * count); for (i = 0; i < count; i++) seq[i] = ccv_array_new(sizeof(ccv_comp_t), 64, 0); for (i = 0; i < scale_upto; i++) { // run it for (j = 0; j < count; j++) { double scale_ratio = pow(2., 1. / (params.interval + 1)); double scale = 1; ccv_scd_classifier_cascade_t* cascade = cascades[j]; for (k = 0; k <= params.interval; k++) { int rows = (int)(pyr[i]->rows / scale + 0.5); int cols = (int)(pyr[i]->cols / scale + 0.5); if (rows < cascade->size.height || cols < cascade->size.width) break; ccv_dense_matrix_t* image = k == 0 ? pyr[i] : 0; if (k > 0) ccv_resample(pyr[i], &image, 0, rows, cols, CCV_INTER_AREA); ccv_dense_matrix_t* scd = 0; if (cascade->margin.left == 0 && cascade->margin.top == 0 && cascade->margin.right == 0 && cascade->margin.bottom == 0) { ccv_scd(image, &scd, 0); if (k > 0) ccv_matrix_free(image); } else { ccv_dense_matrix_t* bordered = 0; ccv_border(image, (ccv_matrix_t**)&bordered, 0, cascade->margin); if (k > 0) ccv_matrix_free(image); ccv_scd(bordered, &scd, 0); ccv_matrix_free(bordered); } ccv_dense_matrix_t* sat = 0; ccv_sat(scd, &sat, 0, CCV_PADDING_ZERO); assert(CCV_GET_CHANNEL(sat->type) == 8); ccv_matrix_free(scd); float* ptr = sat->data.f32; for (y = 0; y < rows; y += params.step_through) { if (y >= sat->rows - cascade->size.height - 1) break; for (x = 0; x < cols; x += params.step_through) { if (x >= sat->cols - cascade->size.width - 1) break; int pass = 1; float sum = 0; for (p = 0; p < cascade->count; p++) { ccv_scd_stump_classifier_t* classifier = cascade->classifiers + p; float v = 0; for (q = 0; q < classifier->count; q++) { ccv_scd_stump_feature_t* feature = classifier->features + q; #if defined(HAVE_SSE2) _ccv_scd_run_feature_at_sse2(ptr + x * 8, sat->cols, feature, surf); __m128 u0 = _mm_add_ps(_mm_mul_ps(surf[0], _mm_loadu_ps(feature->w)), _mm_mul_ps(surf[1], _mm_loadu_ps(feature->w + 4))); __m128 u1 = _mm_add_ps(_mm_mul_ps(surf[2], _mm_loadu_ps(feature->w + 8)), _mm_mul_ps(surf[3], _mm_loadu_ps(feature->w + 12))); __m128 u2 = _mm_add_ps(_mm_mul_ps(surf[4], _mm_loadu_ps(feature->w + 16)), _mm_mul_ps(surf[5], _mm_loadu_ps(feature->w + 20))); __m128 u3 = _mm_add_ps(_mm_mul_ps(surf[6], _mm_loadu_ps(feature->w + 24)), _mm_mul_ps(surf[7], _mm_loadu_ps(feature->w + 28))); u0 = _mm_add_ps(u0, u1); u2 = _mm_add_ps(u2, u3); union { float f[4]; __m128 p; } ux; ux.p = _mm_add_ps(u0, u2); float u = expf(feature->bias + ux.f[0] + ux.f[1] + ux.f[2] + ux.f[3]); #else _ccv_scd_run_feature_at(ptr + x * 8, sat->cols, feature, surf); float u = feature->bias; int r; for (r = 0; r < 32; r++) u += surf[r] * feature->w[r]; u = expf(u); #endif v += (u - 1) / (u + 1); } if (v <= classifier->threshold) { pass = 0; break; } sum = v / classifier->count; } if (pass) { ccv_comp_t comp; comp.rect = ccv_rect((int)((x + 0.5) * (scale / up_ratio) * (1 << i) - 0.5), (int)((y + 0.5) * (scale / up_ratio) * (1 << i) - 0.5), (cascade->size.width - cascade->margin.left - cascade->margin.right) * (scale / up_ratio) * (1 << i), (cascade->size.height - cascade->margin.top - cascade->margin.bottom) * (scale / up_ratio) * (1 << i)); comp.neighbors = 1; comp.classification.id = j + 1; comp.classification.confidence = sum + (cascade->count - 1); ccv_array_push(seq[j], &comp); } } ptr += sat->cols * 8 * params.step_through; } ccv_matrix_free(sat); scale *= scale_ratio; } } } for (i = 1; i < scale_upto; i++) ccv_matrix_free(pyr[i]); if (up_ratio - 1.0 > 1e-4) ccv_matrix_free(a); ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0); for (k = 0; k < count; k++) { /* simple non-maximum suppression, we merge when intersected area / min area > 0.3 */ if(params.min_neighbors == 0) { for (i = 0; i < seq[k]->rnum; i++) { ccv_comp_t* comp = (ccv_comp_t*)ccv_array_get(seq[k], i); ccv_array_push(result_seq, comp); } } else { ccv_array_t* idx_seq = 0; // group retrieved rectangles in order to filter out noise int ncomp = ccv_array_group(seq[k], &idx_seq, _ccv_is_equal_same_class, 0); ccv_comp_t* comps = (ccv_comp_t*)cccalloc(ncomp + 1, sizeof(ccv_comp_t)); // count number of neighbors for (i = 0; i < seq[k]->rnum; i++) { ccv_comp_t r1 = *(ccv_comp_t*)ccv_array_get(seq[k], i); int idx = *(int*)ccv_array_get(idx_seq, i); comps[idx].classification.id = r1.classification.id; if (r1.classification.confidence > comps[idx].classification.confidence || comps[idx].neighbors == 0) { comps[idx].rect = r1.rect; comps[idx].classification.confidence = r1.classification.confidence; } ++comps[idx].neighbors; } // push merged bounding box to result_seq for (i = 0; i < ncomp; i++) { int n = comps[i].neighbors; if (n >= params.min_neighbors) ccv_array_push(result_seq, comps + i); } ccv_array_free(idx_seq); ccfree(comps); } ccv_array_free(seq[k]); } return result_seq; }