from similari import Point2DKalmanFilter if __name__ == '__main__': f = Point2DKalmanFilter() state = f.initiate(1.0, 2.0) for i in range(1, 21): state = f.predict(state) print("Predicted", state.x(), state.y()) pt = (1.0 + i * 0.1, 2.0 + i * 0.1) print("Observation:", pt) state = f.update(state, pt[0], pt[1])