// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Bicubic interpolation with analytic differentiation // // We will use estimation of 2d shift as a sample problem for bicubic // interpolation. // // Let us define f(x, y) = x * x - y * x + y * y // And optimize cost function sum_i [f(x_i + s_x, y_i + s_y) - v_i]^2 // // Bicubic interpolation of f(x, y) will be exact, thus we can expect close to // perfect convergence #include #include "ceres/ceres.h" #include "ceres/cubic_interpolation.h" #include "glog/logging.h" using Grid = ceres::Grid2D; using Interpolator = ceres::BiCubicInterpolator; // Cost-function using analytic interface of BiCubicInterpolator struct AnalyticBiCubicCost : public ceres::CostFunction { EIGEN_MAKE_ALIGNED_OPERATOR_NEW; bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const override { Eigen::Map shift(parameters[0]); const Eigen::Vector2d point = point_ + shift; double* f = residuals; double* dfdr = nullptr; double* dfdc = nullptr; if (jacobians && jacobians[0]) { dfdc = jacobians[0]; dfdr = dfdc + 1; } interpolator_.Evaluate(point.y(), point.x(), f, dfdr, dfdc); if (residuals) { *f -= value_; } return true; } AnalyticBiCubicCost(const Interpolator& interpolator, Eigen::Vector2d point, double value) : point_(std::move(point)), value_(value), interpolator_(interpolator) { set_num_residuals(1); *mutable_parameter_block_sizes() = {2}; } static ceres::CostFunction* Create(const Interpolator& interpolator, const Eigen::Vector2d& point, double value) { return new AnalyticBiCubicCost(interpolator, point, value); } const Eigen::Vector2d point_; const double value_; const Interpolator& interpolator_; }; // Function for input data generation static double f(const double& x, const double& y) { return x * x - y * x + y * y; } int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); // Problem sizes const int kGridRowsHalf = 9; const int kGridColsHalf = 11; const int kGridRows = 2 * kGridRowsHalf + 1; const int kGridCols = 2 * kGridColsHalf + 1; const int kPoints = 4; const Eigen::Vector2d shift(1.234, 2.345); const std::array points = { Eigen::Vector2d{-2., -3.}, Eigen::Vector2d{-2., 3.}, Eigen::Vector2d{2., 3.}, Eigen::Vector2d{2., -3.}}; // Data is a row-major array of kGridRows x kGridCols values of function // f(x, y) on the grid, with x in {-kGridColsHalf, ..., +kGridColsHalf}, // and y in {-kGridRowsHalf, ..., +kGridRowsHalf} double data[kGridRows * kGridCols]; for (int i = 0; i < kGridRows; ++i) { for (int j = 0; j < kGridCols; ++j) { // Using row-major order int index = i * kGridCols + j; double y = i - kGridRowsHalf; double x = j - kGridColsHalf; data[index] = f(x, y); } } const Grid grid(data, -kGridRowsHalf, kGridRowsHalf + 1, -kGridColsHalf, kGridColsHalf + 1); const Interpolator interpolator(grid); Eigen::Vector2d shift_estimate(3.1415, 1.337); ceres::Problem problem; problem.AddParameterBlock(shift_estimate.data(), 2); for (const auto& p : points) { const Eigen::Vector2d shifted = p + shift; const double v = f(shifted.x(), shifted.y()); problem.AddResidualBlock(AnalyticBiCubicCost::Create(interpolator, p, v), nullptr, shift_estimate.data()); } ceres::Solver::Options options; options.minimizer_progress_to_stdout = true; ceres::Solver::Summary summary; ceres::Solve(options, &problem, &summary); std::cout << summary.BriefReport() << '\n'; std::cout << "Bicubic interpolation with analytic derivatives:\n"; std::cout << "Estimated shift: " << shift_estimate.transpose() << ", ground-truth: " << shift.transpose() << " (error: " << (shift_estimate - shift).transpose() << ")" << std::endl; CHECK_LT((shift_estimate - shift).norm(), 1e-9); return 0; }