// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: strandmark@google.com (Petter Strandmark) // // Denoising using Fields of Experts and the Ceres minimizer. // // Note that for good denoising results the weighting between the data term // and the Fields of Experts term needs to be adjusted. This is discussed // in [1]. This program assumes Gaussian noise. The noise model can be changed // by substituting another function for QuadraticCostFunction. // // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of // Computer Vision, 82(2):205--229, 2009. #include #include #include #include #include #include #include #include "ceres/ceres.h" #include "fields_of_experts.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "pgm_image.h" DEFINE_string(input, "", "File to which the output image should be written"); DEFINE_string(foe_file, "", "FoE file to use"); DEFINE_string(output, "", "File to which the output image should be written"); DEFINE_double(sigma, 20.0, "Standard deviation of noise"); DEFINE_string(trust_region_strategy, "levenberg_marquardt", "Options are: levenberg_marquardt, dogleg."); DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg," "subspace_dogleg."); DEFINE_string(linear_solver, "sparse_normal_cholesky", "Options are: " "sparse_normal_cholesky and cgnr."); DEFINE_string(preconditioner, "jacobi", "Options are: " "identity, jacobi, subset"); DEFINE_string(sparse_linear_algebra_library, "suite_sparse", "Options are: suite_sparse, cx_sparse and eigen_sparse"); DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the " "accuracy of each linear solve of the truncated newton step. " "Changing this parameter can affect solve performance."); DEFINE_int32(num_threads, 1, "Number of threads."); DEFINE_int32(num_iterations, 10, "Number of iterations."); DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use" " nonmonotic steps."); DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly " "refine each successful trust region step."); DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves."); DEFINE_int32(max_num_refinement_iterations, 0, "Iterative refinement iterations"); DEFINE_bool(line_search, false, "Use a line search instead of trust region " "algorithm."); DEFINE_double(subset_fraction, 0.2, "The fraction of residual blocks to use for the" " subset preconditioner."); namespace ceres::examples { namespace { // This cost function is used to build the data term. // // f_i(x) = a * (x_i - b)^2 // class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> { public: QuadraticCostFunction(double a, double b) : sqrta_(std::sqrt(a)), b_(b) {} bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const override { const double x = parameters[0][0]; residuals[0] = sqrta_ * (x - b_); if (jacobians != nullptr && jacobians[0] != nullptr) { jacobians[0][0] = sqrta_; } return true; } private: double sqrta_, b_; }; // Creates a Fields of Experts MAP inference problem. void CreateProblem(const FieldsOfExperts& foe, const PGMImage& image, Problem* problem, PGMImage* solution) { // Create the data term CHECK_GT(CERES_GET_FLAG(FLAGS_sigma), 0.0); const double coefficient = 1 / (2.0 * CERES_GET_FLAG(FLAGS_sigma) * CERES_GET_FLAG(FLAGS_sigma)); for (int index = 0; index < image.NumPixels(); ++index) { ceres::CostFunction* cost_function = new QuadraticCostFunction( coefficient, image.PixelFromLinearIndex(index)); problem->AddResidualBlock( cost_function, nullptr, solution->MutablePixelFromLinearIndex(index)); } // Create Ceres cost and loss functions for regularization. One is needed for // each filter. std::vector loss_function(foe.NumFilters()); std::vector cost_function(foe.NumFilters()); for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { loss_function[alpha_index] = foe.NewLossFunction(alpha_index); cost_function[alpha_index] = foe.NewCostFunction(alpha_index); } // Add FoE regularization for each patch in the image. for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) { for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) { // Build a vector with the pixel indices of this patch. std::vector pixels; const std::vector& x_delta_indices = foe.GetXDeltaIndices(); const std::vector& y_delta_indices = foe.GetYDeltaIndices(); for (int i = 0; i < foe.NumVariables(); ++i) { double* pixel = solution->MutablePixel(x + x_delta_indices[i], y + y_delta_indices[i]); pixels.push_back(pixel); } // For this patch with coordinates (x, y), we will add foe.NumFilters() // terms to the objective function. for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { problem->AddResidualBlock( cost_function[alpha_index], loss_function[alpha_index], pixels); } } } } void SetLinearSolver(Solver::Options* options) { CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver), &options->linear_solver_type)); CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner), &options->preconditioner_type)); CHECK(StringToSparseLinearAlgebraLibraryType( CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library), &options->sparse_linear_algebra_library_type)); options->use_mixed_precision_solves = CERES_GET_FLAG(FLAGS_mixed_precision_solves); options->max_num_refinement_iterations = CERES_GET_FLAG(FLAGS_max_num_refinement_iterations); } void SetMinimizerOptions(Solver::Options* options) { options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations); options->minimizer_progress_to_stdout = true; options->num_threads = CERES_GET_FLAG(FLAGS_num_threads); options->eta = CERES_GET_FLAG(FLAGS_eta); options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps); if (CERES_GET_FLAG(FLAGS_line_search)) { options->minimizer_type = ceres::LINE_SEARCH; } CHECK(StringToTrustRegionStrategyType( CERES_GET_FLAG(FLAGS_trust_region_strategy), &options->trust_region_strategy_type)); CHECK( StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type)); options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations); } // Solves the FoE problem using Ceres and post-processes it to make sure the // solution stays within [0, 255]. void SolveProblem(Problem* problem, PGMImage* solution) { // These parameters may be experimented with. For example, ceres::DOGLEG tends // to be faster for 2x2 filters, but gives solutions with slightly higher // objective function value. ceres::Solver::Options options; SetMinimizerOptions(&options); SetLinearSolver(&options); options.function_tolerance = 1e-3; // Enough for denoising. if (options.linear_solver_type == ceres::CGNR && options.preconditioner_type == ceres::SUBSET) { std::vector residual_blocks; problem->GetResidualBlocks(&residual_blocks); // To use the SUBSET preconditioner we need to provide a list of // residual blocks (rows of the Jacobian). The denoising problem // has fairly general sparsity, and there is no apriori reason to // select one residual block over another, so we will randomly // subsample the residual blocks with probability subset_fraction. std::default_random_engine engine; std::uniform_real_distribution<> distribution(0, 1); // rage 0 - 1 for (auto residual_block : residual_blocks) { if (distribution(engine) <= CERES_GET_FLAG(FLAGS_subset_fraction)) { options.residual_blocks_for_subset_preconditioner.insert( residual_block); } } } ceres::Solver::Summary summary; ceres::Solve(options, problem, &summary); std::cout << summary.FullReport() << "\n"; // Make the solution stay in [0, 255]. for (int x = 0; x < solution->width(); ++x) { for (int y = 0; y < solution->height(); ++y) { *solution->MutablePixel(x, y) = std::min(255.0, std::max(0.0, solution->Pixel(x, y))); } } } } // namespace } // namespace ceres::examples int main(int argc, char** argv) { using namespace ceres::examples; GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); google::InitGoogleLogging(argv[0]); if (CERES_GET_FLAG(FLAGS_input).empty()) { std::cerr << "Please provide an image file name using -input.\n"; return 1; } if (CERES_GET_FLAG(FLAGS_foe_file).empty()) { std::cerr << "Please provide a Fields of Experts file name using -foe_file." "\n"; return 1; } // Load the Fields of Experts filters from file. FieldsOfExperts foe; if (!foe.LoadFromFile(CERES_GET_FLAG(FLAGS_foe_file))) { std::cerr << "Loading \"" << CERES_GET_FLAG(FLAGS_foe_file) << "\" failed.\n"; return 2; } // Read the images PGMImage image(CERES_GET_FLAG(FLAGS_input)); if (image.width() == 0) { std::cerr << "Reading \"" << CERES_GET_FLAG(FLAGS_input) << "\" failed.\n"; return 3; } PGMImage solution(image.width(), image.height()); solution.Set(0.0); ceres::Problem problem; CreateProblem(foe, image, &problem, &solution); SolveProblem(&problem, &solution); if (!CERES_GET_FLAG(FLAGS_output).empty()) { CHECK(solution.WriteToFile(CERES_GET_FLAG(FLAGS_output))) << "Writing \"" << CERES_GET_FLAG(FLAGS_output) << "\" failed."; } return 0; }