// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Example of minimizing the Rosenbrock function // (https://en.wikipedia.org/wiki/Rosenbrock_function) using // GradientProblemSolver using derivatives computed using numeric // differentiation. #include "ceres/ceres.h" #include "glog/logging.h" // f(x,y) = (1-x)^2 + 100(y - x^2)^2; struct Rosenbrock { bool operator()(const double* parameters, double* cost) const { const double x = parameters[0]; const double y = parameters[1]; cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); return true; } static ceres::FirstOrderFunction* Create() { constexpr int kNumParameters = 2; return new ceres::NumericDiffFirstOrderFunction( new Rosenbrock); } }; int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); double parameters[2] = {-1.2, 1.0}; ceres::GradientProblemSolver::Options options; options.minimizer_progress_to_stdout = true; ceres::GradientProblemSolver::Summary summary; ceres::GradientProblem problem(Rosenbrock::Create()); ceres::Solve(options, problem, parameters, &summary); std::cout << summary.FullReport() << "\n"; std::cout << "Initial x: " << -1.2 << " y: " << 1.0 << "\n"; std::cout << "Final x: " << parameters[0] << " y: " << parameters[1] << "\n"; return 0; }