// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // A simple example of optimizing a sampled function by using cubic // interpolation. #include "ceres/ceres.h" #include "ceres/cubic_interpolation.h" #include "glog/logging.h" using Interpolator = ceres::CubicInterpolator>; // A simple cost functor that interfaces an interpolated table of // values with automatic differentiation. struct InterpolatedCostFunctor { explicit InterpolatedCostFunctor(const Interpolator& interpolator) : interpolator(interpolator) {} template bool operator()(const T* x, T* residuals) const { interpolator.Evaluate(*x, residuals); return true; } static ceres::CostFunction* Create(const Interpolator& interpolator) { return new ceres::AutoDiffCostFunction( new InterpolatedCostFunctor(interpolator)); } private: const Interpolator& interpolator; }; int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); // Evaluate the function f(x) = (x - 4.5)^2; const int kNumSamples = 10; double values[kNumSamples]; for (int i = 0; i < kNumSamples; ++i) { values[i] = (i - 4.5) * (i - 4.5); } ceres::Grid1D array(values, 0, kNumSamples); Interpolator interpolator(array); double x = 1.0; ceres::Problem problem; ceres::CostFunction* cost_function = InterpolatedCostFunctor::Create(interpolator); problem.AddResidualBlock(cost_function, nullptr, &x); ceres::Solver::Options options; options.minimizer_progress_to_stdout = true; ceres::Solver::Summary summary; ceres::Solve(options, &problem, &summary); std::cout << summary.BriefReport() << "\n"; std::cout << "Expected x: 4.5. Actual x : " << x << std::endl; return 0; }