// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: vitus@google.com (Michael Vitus) // // An example of solving a graph-based formulation of Simultaneous Localization // and Mapping (SLAM). It reads a 2D pose graph problem definition file in the // g2o format, formulates and solves the Ceres optimization problem, and outputs // the original and optimized poses to file for plotting. #include #include #include #include #include #include "angle_manifold.h" #include "ceres/ceres.h" #include "common/read_g2o.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "pose_graph_2d_error_term.h" #include "types.h" DEFINE_string(input, "", "The pose graph definition filename in g2o format."); namespace ceres::examples { namespace { // Constructs the nonlinear least squares optimization problem from the pose // graph constraints. void BuildOptimizationProblem(const std::vector& constraints, std::map* poses, ceres::Problem* problem) { CHECK(poses != nullptr); CHECK(problem != nullptr); if (constraints.empty()) { LOG(INFO) << "No constraints, no problem to optimize."; return; } ceres::LossFunction* loss_function = nullptr; ceres::Manifold* angle_manifold = AngleManifold::Create(); for (const auto& constraint : constraints) { auto pose_begin_iter = poses->find(constraint.id_begin); CHECK(pose_begin_iter != poses->end()) << "Pose with ID: " << constraint.id_begin << " not found."; auto pose_end_iter = poses->find(constraint.id_end); CHECK(pose_end_iter != poses->end()) << "Pose with ID: " << constraint.id_end << " not found."; const Eigen::Matrix3d sqrt_information = constraint.information.llt().matrixL(); // Ceres will take ownership of the pointer. ceres::CostFunction* cost_function = PoseGraph2dErrorTerm::Create( constraint.x, constraint.y, constraint.yaw_radians, sqrt_information); problem->AddResidualBlock(cost_function, loss_function, &pose_begin_iter->second.x, &pose_begin_iter->second.y, &pose_begin_iter->second.yaw_radians, &pose_end_iter->second.x, &pose_end_iter->second.y, &pose_end_iter->second.yaw_radians); problem->SetManifold(&pose_begin_iter->second.yaw_radians, angle_manifold); problem->SetManifold(&pose_end_iter->second.yaw_radians, angle_manifold); } // The pose graph optimization problem has three DOFs that are not fully // constrained. This is typically referred to as gauge freedom. You can apply // a rigid body transformation to all the nodes and the optimization problem // will still have the exact same cost. The Levenberg-Marquardt algorithm has // internal damping which mitigate this issue, but it is better to properly // constrain the gauge freedom. This can be done by setting one of the poses // as constant so the optimizer cannot change it. auto pose_start_iter = poses->begin(); CHECK(pose_start_iter != poses->end()) << "There are no poses."; problem->SetParameterBlockConstant(&pose_start_iter->second.x); problem->SetParameterBlockConstant(&pose_start_iter->second.y); problem->SetParameterBlockConstant(&pose_start_iter->second.yaw_radians); } // Returns true if the solve was successful. bool SolveOptimizationProblem(ceres::Problem* problem) { CHECK(problem != nullptr); ceres::Solver::Options options; options.max_num_iterations = 100; options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; ceres::Solver::Summary summary; ceres::Solve(options, problem, &summary); std::cout << summary.FullReport() << '\n'; return summary.IsSolutionUsable(); } // Output the poses to the file with format: ID x y yaw_radians. bool OutputPoses(const std::string& filename, const std::map& poses) { std::fstream outfile; outfile.open(filename.c_str(), std::istream::out); if (!outfile) { std::cerr << "Error opening the file: " << filename << '\n'; return false; } for (const auto& pair : poses) { outfile << pair.first << " " << pair.second.x << " " << pair.second.y << ' ' << pair.second.yaw_radians << '\n'; } return true; } } // namespace } // namespace ceres::examples int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); CHECK(FLAGS_input != "") << "Need to specify the filename to read."; std::map poses; std::vector constraints; CHECK(ceres::examples::ReadG2oFile(FLAGS_input, &poses, &constraints)) << "Error reading the file: " << FLAGS_input; std::cout << "Number of poses: " << poses.size() << '\n'; std::cout << "Number of constraints: " << constraints.size() << '\n'; CHECK(ceres::examples::OutputPoses("poses_original.txt", poses)) << "Error outputting to poses_original.txt"; ceres::Problem problem; ceres::examples::BuildOptimizationProblem(constraints, &poses, &problem); CHECK(ceres::examples::SolveOptimizationProblem(&problem)) << "The solve was not successful, exiting."; CHECK(ceres::examples::OutputPoses("poses_optimized.txt", poses)) << "Error outputting to poses_original.txt"; return 0; }