// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // Copyright 2023 Google Inc. All Rights Reserved. // // Authors: wjr@google.com (William Rucklidge), // keir@google.com (Keir Mierle), // dgossow@google.com (David Gossow) #ifndef CERES_PUBLIC_GRADIENT_CHECKER_H_ #define CERES_PUBLIC_GRADIENT_CHECKER_H_ #include #include #include #include "ceres/cost_function.h" #include "ceres/dynamic_numeric_diff_cost_function.h" #include "ceres/internal/disable_warnings.h" #include "ceres/internal/eigen.h" #include "ceres/internal/export.h" #include "ceres/internal/fixed_array.h" #include "ceres/manifold.h" #include "glog/logging.h" namespace ceres { // GradientChecker compares the Jacobians returned by a cost function against // derivatives estimated using finite differencing. // // The condition enforced is that // // (J_actual(i, j) - J_numeric(i, j)) // ------------------------------------ < relative_precision // max(J_actual(i, j), J_numeric(i, j)) // // where J_actual(i, j) is the Jacobian as computed by the supplied cost // function (by the user) multiplied by the manifold Jacobian and J_numeric is // the Jacobian as computed by finite differences, multiplied by the manifold // Jacobian as well. // // How to use: Fill in an array of pointers to parameter blocks for your // CostFunction, and then call Probe(). Check that the return value is 'true'. class CERES_EXPORT GradientChecker { public: // This will not take ownership of the cost function or manifolds. // // function: The cost function to probe. // // manifolds: A vector of manifolds for each parameter. May be nullptr or // contain nullptrs to indicate that the respective parameter blocks are // Euclidean. // // options: Options to use for numerical differentiation. GradientChecker(const CostFunction* function, const std::vector* manifolds, const NumericDiffOptions& options); // Contains results from a call to Probe for later inspection. struct CERES_EXPORT ProbeResults { // The return value of the cost function. bool return_value; // Computed residual vector. Vector residuals; // The sizes of the Jacobians below are dictated by the cost function's // parameter block size and residual block sizes. If a parameter block has a // manifold associated with it, the size of the "local" Jacobian will be // determined by the dimension of the manifold (which is the same as the // dimension of the tangent space) and residual block size, otherwise it // will be identical to the regular Jacobian. // Derivatives as computed by the cost function. std::vector jacobians; // Derivatives as computed by the cost function in local space. std::vector local_jacobians; // Derivatives as computed by numerical differentiation in local space. std::vector numeric_jacobians; // Derivatives as computed by numerical differentiation in local space. std::vector local_numeric_jacobians; // Contains the maximum relative error found in the local Jacobians. double maximum_relative_error; // If an error was detected, this will contain a detailed description of // that error. std::string error_log; }; // Call the cost function, compute alternative Jacobians using finite // differencing and compare results. If manifolds are given, the Jacobians // will be multiplied by the manifold Jacobians before performing the check, // which effectively means that all errors along the null space of the // manifold will be ignored. Returns false if the Jacobians don't match, the // cost function return false, or if a cost function returns a different // residual when called with a Jacobian output argument vs. calling it // without. Otherwise returns true. // // parameters: The parameter values at which to probe. // relative_precision: A threshold for the relative difference between the // Jacobians. If the Jacobians differ by more than this amount, then the // probe fails. // results: On return, the Jacobians (and other information) will be stored // here. May be nullptr. // // Returns true if no problems are detected and the difference between the // Jacobians is less than error_tolerance. bool Probe(double const* const* parameters, double relative_precision, ProbeResults* results) const; private: GradientChecker() = delete; GradientChecker(const GradientChecker&) = delete; void operator=(const GradientChecker&) = delete; std::vector manifolds_; const CostFunction* function_; std::unique_ptr finite_diff_cost_function_; }; } // namespace ceres #include "ceres/internal/reenable_warnings.h" #endif // CERES_PUBLIC_GRADIENT_CHECKER_H_