// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #ifndef CERES_PUBLIC_GRADIENT_PROBLEM_H_ #define CERES_PUBLIC_GRADIENT_PROBLEM_H_ #include #include "ceres/first_order_function.h" #include "ceres/internal/disable_warnings.h" #include "ceres/internal/export.h" #include "ceres/manifold.h" namespace ceres { class FirstOrderFunction; // Instances of GradientProblem represent general non-linear // optimization problems that must be solved using just the value of // the objective function and its gradient. // Unlike the Problem class, which can only be used to model non-linear least // squares problems, instances of GradientProblem are not restricted in the form // of the objective function. // // Structurally GradientProblem is a composition of a FirstOrderFunction and // optionally a Manifold. // // The FirstOrderFunction is responsible for evaluating the cost and gradient of // the objective function. // // The Manifold is responsible for going back and forth between the ambient // space and the local tangent space. (See manifold.h for more details). When a // Manifold is not provided, then the tangent space is assumed to coincide with // the ambient Euclidean space that the gradient vector lives in. // // Example usage: // // The following demonstrate the problem construction for Rosenbrock's function // // f(x,y) = (1-x)^2 + 100(y - x^2)^2; // // class Rosenbrock : public ceres::FirstOrderFunction { // public: // virtual ~Rosenbrock() {} // // virtual bool Evaluate(const double* parameters, // double* cost, // double* gradient) const { // const double x = parameters[0]; // const double y = parameters[1]; // // cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); // if (gradient != nullptr) { // gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; // gradient[1] = 200.0 * (y - x * x); // } // return true; // }; // // virtual int NumParameters() const { return 2; }; // }; // // ceres::GradientProblem problem(new Rosenbrock()); class CERES_EXPORT GradientProblem { public: // Takes ownership of the function. explicit GradientProblem(FirstOrderFunction* function); // Takes ownership of the function and the manifold. GradientProblem(FirstOrderFunction* function, Manifold* manifold); int NumParameters() const; // Dimension of the manifold (and its tangent space). int NumTangentParameters() const; // This call is not thread safe. bool Evaluate(const double* parameters, double* cost, double* gradient) const; bool Plus(const double* x, const double* delta, double* x_plus_delta) const; const FirstOrderFunction* function() const { return function_.get(); } FirstOrderFunction* mutable_function() { return function_.get(); } const Manifold* manifold() const { return manifold_.get(); } Manifold* mutable_manifold() { return manifold_.get(); } private: std::unique_ptr function_; std::unique_ptr manifold_; std::unique_ptr scratch_; }; } // namespace ceres #include "ceres/internal/reenable_warnings.h" #endif // CERES_PUBLIC_GRADIENT_PROBLEM_H_