// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2020 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: darius.rueckert@fau.de (Darius Rueckert) // // #ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ #define CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ #include #include #include "ceres/constants.h" namespace ceres { // The brdf is based on: // Burley, Brent, and Walt Disney Animation Studios. "Physically-based shading // at disney." ACM SIGGRAPH. Vol. 2012. 2012. // // The implementation is based on: // https://github.com/wdas/brdf/blob/master/src/brdfs/disney.brdf struct Brdf { public: template inline bool operator()(const T* const material, const T* const c_ptr, const T* const n_ptr, const T* const v_ptr, const T* const l_ptr, const T* const x_ptr, const T* const y_ptr, T* residual) const { using Vec3 = Eigen::Matrix; T metallic = material[0]; T subsurface = material[1]; T specular = material[2]; T roughness = material[3]; T specular_tint = material[4]; T anisotropic = material[5]; T sheen = material[6]; T sheen_tint = material[7]; T clearcoat = material[8]; T clearcoat_gloss = material[9]; Eigen::Map c(c_ptr); Eigen::Map n(n_ptr); Eigen::Map v(v_ptr); Eigen::Map l(l_ptr); Eigen::Map x(x_ptr); Eigen::Map y(y_ptr); const T n_dot_l = n.dot(l); const T n_dot_v = n.dot(v); const Vec3 l_p_v = l + v; const Vec3 h = l_p_v / l_p_v.norm(); const T n_dot_h = n.dot(h); const T l_dot_h = l.dot(h); const T h_dot_x = h.dot(x); const T h_dot_y = h.dot(y); const T c_dlum = T(0.3) * c[0] + T(0.6) * c[1] + T(0.1) * c[2]; const Vec3 c_tint = c / c_dlum; const Vec3 c_spec0 = Lerp(specular * T(0.08) * Lerp(Vec3(T(1), T(1), T(1)), c_tint, specular_tint), c, metallic); const Vec3 c_sheen = Lerp(Vec3(T(1), T(1), T(1)), c_tint, sheen_tint); // Diffuse fresnel - go from 1 at normal incidence to .5 at grazing // and mix in diffuse retro-reflection based on roughness const T fl = SchlickFresnel(n_dot_l); const T fv = SchlickFresnel(n_dot_v); const T fd_90 = T(0.5) + T(2) * l_dot_h * l_dot_h * roughness; const T fd = Lerp(T(1), fd_90, fl) * Lerp(T(1), fd_90, fv); // Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf // 1.25 scale is used to (roughly) preserve albedo // Fss90 used to "flatten" retroreflection based on roughness const T fss_90 = l_dot_h * l_dot_h * roughness; const T fss = Lerp(T(1), fss_90, fl) * Lerp(T(1), fss_90, fv); const T ss = T(1.25) * (fss * (T(1) / (n_dot_l + n_dot_v) - T(0.5)) + T(0.5)); // specular const T eps = T(0.001); const T aspct = Aspect(anisotropic); const T ax_temp = Square(roughness) / aspct; const T ay_temp = Square(roughness) * aspct; const T ax = (ax_temp < eps ? eps : ax_temp); const T ay = (ay_temp < eps ? eps : ay_temp); const T ds = GTR2Aniso(n_dot_h, h_dot_x, h_dot_y, ax, ay); const T fh = SchlickFresnel(l_dot_h); const Vec3 fs = Lerp(c_spec0, Vec3(T(1), T(1), T(1)), fh); const T roughg = Square(roughness * T(0.5) + T(0.5)); const T ggxn_dot_l = SmithG_GGX(n_dot_l, roughg); const T ggxn_dot_v = SmithG_GGX(n_dot_v, roughg); const T gs = ggxn_dot_l * ggxn_dot_v; // sheen const Vec3 f_sheen = fh * sheen * c_sheen; // clearcoat (ior = 1.5 -> F0 = 0.04) const T a = Lerp(T(0.1), T(0.001), clearcoat_gloss); const T dr = GTR1(n_dot_h, a); const T fr = Lerp(T(0.04), T(1), fh); const T cggxn_dot_l = SmithG_GGX(n_dot_l, T(0.25)); const T cggxn_dot_v = SmithG_GGX(n_dot_v, T(0.25)); const T gr = cggxn_dot_l * cggxn_dot_v; const Vec3 result_no_cosine = (T(1.0 / constants::pi) * Lerp(fd, ss, subsurface) * c + f_sheen) * (T(1) - metallic) + gs * fs * ds + Vec3(T(0.25), T(0.25), T(0.25)) * clearcoat * gr * fr * dr; const Vec3 result = n_dot_l * result_no_cosine; residual[0] = result(0); residual[1] = result(1); residual[2] = result(2); return true; } template inline T SchlickFresnel(const T& u) const { T m = T(1) - u; const T m2 = m * m; return m2 * m2 * m; // (1-u)^5 } template inline T Aspect(const T& anisotropic) const { return T(sqrt(T(1) - anisotropic * T(0.9))); } template inline T SmithG_GGX(const T& n_dot_v, const T& alpha_g) const { const T a = alpha_g * alpha_g; const T b = n_dot_v * n_dot_v; return T(1) / (n_dot_v + T(sqrt(a + b - a * b))); } // Generalized-Trowbridge-Reitz (GTR) Microfacet Distribution // See paper, Appendix B template inline T GTR1(const T& n_dot_h, const T& a) const { T result = T(0); if (a >= T(1)) { result = T(1 / constants::pi); } else { const T a2 = a * a; const T t = T(1) + (a2 - T(1)) * n_dot_h * n_dot_h; result = (a2 - T(1)) / (T(constants::pi) * T(log(a2) * t)); } return result; } template inline T GTR2Aniso(const T& n_dot_h, const T& h_dot_x, const T& h_dot_y, const T& ax, const T& ay) const { return T(1) / (T(constants::pi) * ax * ay * Square(Square(h_dot_x / ax) + Square(h_dot_y / ay) + n_dot_h * n_dot_h)); } template inline T Lerp(const T& a, const T& b, const T& u) const { return a + u * (b - a); } template inline typename Derived1::PlainObject Lerp( const Eigen::MatrixBase& a, const Eigen::MatrixBase& b, typename Derived1::Scalar alpha) const { return (typename Derived1::Scalar(1) - alpha) * a + alpha * b; } template inline T Square(const T& x) const { return x * x; } }; } // namespace ceres #endif // CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_