// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2020 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: nikolaus@nikolaus-demmel.de (Nikolaus Demmel) // // #ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_ #define CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_ #include #include "ceres/cubic_interpolation.h" namespace ceres { // Photometric residual that computes the intensity difference for a patch // between host and target frame. The point is parameterized with inverse // distance relative to the host frame. The relative pose between host and // target frame is computed from their respective absolute poses. // // The residual is similar to the one defined by Engel et al. [1]. Differences // include: // // 1. Use of a camera model based on spherical projection, namely the enhanced // unified camera model [2][3]. This is intended to bring some variability to // the benchmark compared to the SnavelyReprojection that uses a // polynomial-based distortion model. // // 2. To match the camera model, inverse distance parameterization is used for // points instead of inverse depth [4]. // // 3. For simplicity, camera intrinsics are assumed constant, and thus host // frame points are passed as (unprojected) bearing vectors, which avoids the // need for an 'unproject' function. // // 4. Some details of the residual in [1] are omitted for simplicity: The // brightness transform parameters [a,b], the constant pre-weight w, and the // per-pixel robust norm. // // [1] J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," in IEEE // Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, // pp. 611-625, 1 March 2018. // // [2] B. Khomutenko, G. Garcia and P. Martinet, "An Enhanced Unified Camera // Model," in IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 137-144, // Jan. 2016. // // [3] V. Usenko, N. Demmel and D. Cremers, "The Double Sphere Camera Model," // 2018 International Conference on 3D Vision (3DV), Verona, 2018, pp. 552-560. // // [4] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler and D. Cremers, // "Omnidirectional DSO: Direct Sparse Odometry With Fisheye Cameras," in IEEE // Robotics and Automation Letters, vol. 3, no. 4, pp. 3693-3700, Oct. 2018. template struct PhotometricError { static constexpr int PATCH_SIZE = PATCH_SIZE_; static constexpr int POSE_SIZE = 7; static constexpr int POINT_SIZE = 1; using Grid = Grid2D; using Interpolator = BiCubicInterpolator; using Intrinsics = Eigen::Array; template using Patch = Eigen::Array; template using PatchVectors = Eigen::Matrix; PhotometricError(const Patch& intensities_host, const PatchVectors& bearings_host, const Interpolator& image_target, const Intrinsics& intrinsics) : intensities_host_(intensities_host), bearings_host_(bearings_host), image_target_(image_target), intrinsics_(intrinsics) {} template inline bool Project(Eigen::Matrix& proj, const Eigen::Matrix& p) const { const double& fx = intrinsics_[0]; const double& fy = intrinsics_[1]; const double& cx = intrinsics_[2]; const double& cy = intrinsics_[3]; const double& alpha = intrinsics_[4]; const double& beta = intrinsics_[5]; const T rho2 = beta * (p.x() * p.x() + p.y() * p.y()) + p.z() * p.z(); const T rho = sqrt(rho2); // Check if 3D point is in domain of projection function. // See (8) and (17) in [3]. constexpr double NUMERIC_EPSILON = 1e-10; const double w = alpha > 0.5 ? (1.0 - alpha) / alpha : alpha / (1.0 - alpha); if (p.z() <= -w * rho + NUMERIC_EPSILON) { return false; } const T norm = alpha * rho + (1.0 - alpha) * p.z(); const T norm_inv = 1.0 / norm; const T mx = p.x() * norm_inv; const T my = p.y() * norm_inv; proj[0] = fx * mx + cx; proj[1] = fy * my + cy; return true; } template inline bool operator()(const T* const pose_host_ptr, const T* const pose_target_ptr, const T* const idist_ptr, T* residuals_ptr) const { Eigen::Map> q_w_h(pose_host_ptr); Eigen::Map> t_w_h(pose_host_ptr + 4); Eigen::Map> q_w_t(pose_target_ptr); Eigen::Map> t_w_t(pose_target_ptr + 4); const T& idist = *idist_ptr; Eigen::Map> residuals(residuals_ptr); // Compute relative pose from host to target frame. const Eigen::Quaternion q_t_h = q_w_t.conjugate() * q_w_h; const Eigen::Matrix R_t_h = q_t_h.toRotationMatrix(); const Eigen::Matrix t_t_h = q_w_t.conjugate() * (t_w_h - t_w_t); // Transform points from host to target frame. 3D point in target frame is // scaled by idist for numerical stability when idist is close to 0 // (projection is invariant to scaling). PatchVectors p_target_scaled = (R_t_h * bearings_host_).colwise() + idist * t_t_h; // Project points and interpolate image. Patch intensities_target; for (int i = 0; i < p_target_scaled.cols(); ++i) { Eigen::Matrix uv; if (!Project(uv, Eigen::Matrix(p_target_scaled.col(i)))) { // If any point of the patch is outside the domain of the projection // function, the residual cannot be evaluated. For the benchmark we want // to avoid this case and thus throw an exception to indicate // immediately if it does actually happen after possible future changes. throw std::runtime_error("Benchmark data leads to invalid projection."); } // Mind the order of u and v: Evaluate takes (row, column), but u is // left-to-right and v top-to-bottom image axis. image_target_.Evaluate(uv[1], uv[0], &intensities_target[i]); } // Residual is intensity difference between host and target frame. residuals = intensities_target - intensities_host_; return true; } private: const Patch& intensities_host_; const PatchVectors& bearings_host_; const Interpolator& image_target_; const Intrinsics& intrinsics_; }; } // namespace ceres #endif // CERES_INTERNAL_AUTODIFF_BENCHMARK_PHOTOMETRIC_ERROR_H_