// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/autodiff_first_order_function.h" #include #include "ceres/array_utils.h" #include "ceres/first_order_function.h" #include "gtest/gtest.h" namespace ceres { namespace internal { class QuadraticCostFunctor { public: explicit QuadraticCostFunctor(double a) : a_(a) {} template bool operator()(const T* const x, T* cost) const { cost[0] = x[0] * x[1] + x[2] * x[3] - a_; return true; } private: double a_; }; TEST(AutoDiffFirstOrderFunction, BilinearDifferentiationTest) { std::unique_ptr function( new AutoDiffFirstOrderFunction( new QuadraticCostFunctor(1.0))); double parameters[4] = {1.0, 2.0, 3.0, 4.0}; double gradient[4]; double cost; function->Evaluate(parameters, &cost, nullptr); EXPECT_EQ(cost, 13.0); cost = -1.0; function->Evaluate(parameters, &cost, gradient); EXPECT_EQ(cost, 13.0); EXPECT_EQ(gradient[0], parameters[1]); EXPECT_EQ(gradient[1], parameters[0]); EXPECT_EQ(gradient[2], parameters[3]); EXPECT_EQ(gradient[3], parameters[2]); } } // namespace internal } // namespace ceres