// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) #include "ceres/cuda_kernels_vector_ops.h" #include #include #include #include #include "ceres/context_impl.h" #include "ceres/cuda_buffer.h" #include "ceres/internal/config.h" #include "ceres/internal/eigen.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { #ifndef CERES_NO_CUDA TEST(CudaFP64ToFP32, SimpleConversions) { ContextImpl context; std::string cuda_error; EXPECT_TRUE(context.InitCuda(&cuda_error)) << cuda_error; std::vector fp64_cpu = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}; CudaBuffer fp64_gpu(&context); fp64_gpu.CopyFromCpuVector(fp64_cpu); CudaBuffer fp32_gpu(&context); fp32_gpu.Reserve(fp64_cpu.size()); CudaFP64ToFP32(fp64_gpu.data(), fp32_gpu.data(), fp64_cpu.size(), context.DefaultStream()); std::vector fp32_cpu(fp64_cpu.size()); fp32_gpu.CopyToCpu(fp32_cpu.data(), fp32_cpu.size()); for (int i = 0; i < fp32_cpu.size(); ++i) { EXPECT_EQ(fp32_cpu[i], static_cast(fp64_cpu[i])); } } TEST(CudaFP64ToFP32, NumericallyExtremeValues) { ContextImpl context; std::string cuda_error; EXPECT_TRUE(context.InitCuda(&cuda_error)) << cuda_error; std::vector fp64_cpu = { DBL_MIN, 10.0 * DBL_MIN, DBL_MAX, 0.1 * DBL_MAX}; // First just make sure that the compiler has represented these values // accurately as fp64. EXPECT_GT(fp64_cpu[0], 0.0); EXPECT_GT(fp64_cpu[1], 0.0); EXPECT_TRUE(std::isfinite(fp64_cpu[2])); EXPECT_TRUE(std::isfinite(fp64_cpu[3])); CudaBuffer fp64_gpu(&context); fp64_gpu.CopyFromCpuVector(fp64_cpu); CudaBuffer fp32_gpu(&context); fp32_gpu.Reserve(fp64_cpu.size()); CudaFP64ToFP32(fp64_gpu.data(), fp32_gpu.data(), fp64_cpu.size(), context.DefaultStream()); std::vector fp32_cpu(fp64_cpu.size()); fp32_gpu.CopyToCpu(fp32_cpu.data(), fp32_cpu.size()); EXPECT_EQ(fp32_cpu[0], 0.0f); EXPECT_EQ(fp32_cpu[1], 0.0f); EXPECT_EQ(fp32_cpu[2], std::numeric_limits::infinity()); EXPECT_EQ(fp32_cpu[3], std::numeric_limits::infinity()); } TEST(CudaFP32ToFP64, SimpleConversions) { ContextImpl context; std::string cuda_error; EXPECT_TRUE(context.InitCuda(&cuda_error)) << cuda_error; std::vector fp32_cpu = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}; CudaBuffer fp32_gpu(&context); fp32_gpu.CopyFromCpuVector(fp32_cpu); CudaBuffer fp64_gpu(&context); fp64_gpu.Reserve(fp32_cpu.size()); CudaFP32ToFP64(fp32_gpu.data(), fp64_gpu.data(), fp32_cpu.size(), context.DefaultStream()); std::vector fp64_cpu(fp32_cpu.size()); fp64_gpu.CopyToCpu(fp64_cpu.data(), fp64_cpu.size()); for (int i = 0; i < fp64_cpu.size(); ++i) { EXPECT_EQ(fp64_cpu[i], static_cast(fp32_cpu[i])); } } TEST(CudaSetZeroFP32, NonZeroInput) { ContextImpl context; std::string cuda_error; EXPECT_TRUE(context.InitCuda(&cuda_error)) << cuda_error; std::vector fp32_cpu = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}; CudaBuffer fp32_gpu(&context); fp32_gpu.CopyFromCpuVector(fp32_cpu); CudaSetZeroFP32(fp32_gpu.data(), fp32_cpu.size(), context.DefaultStream()); std::vector fp32_cpu_zero(fp32_cpu.size()); fp32_gpu.CopyToCpu(fp32_cpu_zero.data(), fp32_cpu_zero.size()); for (int i = 0; i < fp32_cpu_zero.size(); ++i) { EXPECT_EQ(fp32_cpu_zero[i], 0.0f); } } TEST(CudaSetZeroFP64, NonZeroInput) { ContextImpl context; std::string cuda_error; EXPECT_TRUE(context.InitCuda(&cuda_error)) << cuda_error; std::vector fp64_cpu = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}; CudaBuffer fp64_gpu(&context); fp64_gpu.CopyFromCpuVector(fp64_cpu); CudaSetZeroFP64(fp64_gpu.data(), fp64_cpu.size(), context.DefaultStream()); std::vector fp64_cpu_zero(fp64_cpu.size()); fp64_gpu.CopyToCpu(fp64_cpu_zero.data(), fp64_cpu_zero.size()); for (int i = 0; i < fp64_cpu_zero.size(); ++i) { EXPECT_EQ(fp64_cpu_zero[i], 0.0); } } TEST(CudaDsxpy, DoubleValues) { ContextImpl context; std::string cuda_error; EXPECT_TRUE(context.InitCuda(&cuda_error)) << cuda_error; std::vector fp32_cpu_a = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}; std::vector fp64_cpu_b = { 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}; CudaBuffer fp32_gpu_a(&context); fp32_gpu_a.CopyFromCpuVector(fp32_cpu_a); CudaBuffer fp64_gpu_b(&context); fp64_gpu_b.CopyFromCpuVector(fp64_cpu_b); CudaDsxpy(fp64_gpu_b.data(), fp32_gpu_a.data(), fp32_gpu_a.size(), context.DefaultStream()); fp64_gpu_b.CopyToCpu(fp64_cpu_b.data(), fp64_cpu_b.size()); for (int i = 0; i < fp64_cpu_b.size(); ++i) { EXPECT_DOUBLE_EQ(fp64_cpu_b[i], 2.0 * fp32_cpu_a[i]); } } TEST(CudaDtDxpy, ComputeFourItems) { ContextImpl context; std::string cuda_error; EXPECT_TRUE(context.InitCuda(&cuda_error)) << cuda_error; std::vector x_cpu = {1, 2, 3, 4}; std::vector y_cpu = {4, 3, 2, 1}; std::vector d_cpu = {10, 20, 30, 40}; CudaBuffer x_gpu(&context); x_gpu.CopyFromCpuVector(x_cpu); CudaBuffer y_gpu(&context); y_gpu.CopyFromCpuVector(y_cpu); CudaBuffer d_gpu(&context); d_gpu.CopyFromCpuVector(d_cpu); CudaDtDxpy(y_gpu.data(), d_gpu.data(), x_gpu.data(), y_gpu.size(), context.DefaultStream()); y_gpu.CopyToCpu(y_cpu.data(), y_cpu.size()); EXPECT_DOUBLE_EQ(y_cpu[0], 4.0 + 10.0 * 10.0 * 1.0); EXPECT_DOUBLE_EQ(y_cpu[1], 3.0 + 20.0 * 20.0 * 2.0); EXPECT_DOUBLE_EQ(y_cpu[2], 2.0 + 30.0 * 30.0 * 3.0); EXPECT_DOUBLE_EQ(y_cpu[3], 1.0 + 40.0 * 40.0 * 4.0); } #endif // CERES_NO_CUDA } // namespace internal } // namespace ceres