// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) // // A CUDA sparse matrix linear operator. #ifndef CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_ #define CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_ // This include must come before any #ifndef check on Ceres compile options. // clang-format off #include "ceres/internal/config.h" // clang-format on #include #include #include #include "ceres/compressed_row_sparse_matrix.h" #include "ceres/context_impl.h" #include "ceres/internal/export.h" #include "ceres/types.h" #ifndef CERES_NO_CUDA #include "ceres/cuda_buffer.h" #include "ceres/cuda_vector.h" #include "cusparse.h" namespace ceres::internal { // A sparse matrix hosted on the GPU in compressed row sparse format, with // CUDA-accelerated operations. // The user of the class must ensure that ContextImpl::InitCuda() has already // been successfully called before using this class. class CERES_NO_EXPORT CudaSparseMatrix { public: // Create a GPU copy of the matrix provided. CudaSparseMatrix(ContextImpl* context, const CompressedRowSparseMatrix& crs_matrix); // Create matrix from existing row and column index buffers. // Values are left uninitialized. CudaSparseMatrix(int num_cols, CudaBuffer&& rows, CudaBuffer&& cols, ContextImpl* context); ~CudaSparseMatrix(); // Left/right products are using internal buffer and are not thread-safe // y = y + Ax; void RightMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const; // y = y + A'x; void LeftMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const; int num_rows() const { return num_rows_; } int num_cols() const { return num_cols_; } int num_nonzeros() const { return num_nonzeros_; } const int32_t* rows() const { return rows_.data(); } const int32_t* cols() const { return cols_.data(); } const double* values() const { return values_.data(); } int32_t* mutable_rows() { return rows_.data(); } int32_t* mutable_cols() { return cols_.data(); } double* mutable_values() { return values_.data(); } // If subsequent uses of this matrix involve only numerical changes and no // structural changes, then this method can be used to copy the updated // non-zero values -- the row and column index arrays are kept the same. It // is the caller's responsibility to ensure that the sparsity structure of the // matrix is unchanged. void CopyValuesFromCpu(const CompressedRowSparseMatrix& crs_matrix); const cusparseSpMatDescr_t& descr() const { return descr_; } private: // Disable copy and assignment. CudaSparseMatrix(const CudaSparseMatrix&) = delete; CudaSparseMatrix& operator=(const CudaSparseMatrix&) = delete; // Allocate temporary buffer for left/right products, create cuSPARSE // descriptors void Initialize(); // y = y + op(M)x. op must be either CUSPARSE_OPERATION_NON_TRANSPOSE or // CUSPARSE_OPERATION_TRANSPOSE. void SpMv(cusparseOperation_t op, const cusparseDnVecDescr_t& x, const cusparseDnVecDescr_t& y) const; int num_rows_ = 0; int num_cols_ = 0; int num_nonzeros_ = 0; ContextImpl* context_ = nullptr; // CSR row indices. CudaBuffer rows_; // CSR column indices. CudaBuffer cols_; // CSR values. CudaBuffer values_; // CuSparse object that describes this matrix. cusparseSpMatDescr_t descr_ = nullptr; // Dense vector descriptors for pointer interface cusparseDnVecDescr_t descr_vec_left_ = nullptr; cusparseDnVecDescr_t descr_vec_right_ = nullptr; mutable CudaBuffer spmv_buffer_; }; } // namespace ceres::internal #endif // CERES_NO_CUDA #endif // CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_