// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #ifndef CERES_INTERNAL_DOGLEG_STRATEGY_H_ #define CERES_INTERNAL_DOGLEG_STRATEGY_H_ #include "ceres/internal/disable_warnings.h" #include "ceres/internal/export.h" #include "ceres/linear_solver.h" #include "ceres/trust_region_strategy.h" namespace ceres::internal { // Dogleg step computation and trust region sizing strategy based on // on "Methods for Nonlinear Least Squares" by K. Madsen, H.B. Nielsen // and O. Tingleff. Available to download from // // http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf // // One minor modification is that instead of computing the pure // Gauss-Newton step, we compute a regularized version of it. This is // because the Jacobian is often rank-deficient and in such cases // using a direct solver leads to numerical failure. // // If SUBSPACE is passed as the type argument to the constructor, the // DoglegStrategy follows the approach by Shultz, Schnabel, Byrd. // This finds the exact optimum over the two-dimensional subspace // spanned by the two Dogleg vectors. class CERES_NO_EXPORT DoglegStrategy final : public TrustRegionStrategy { public: explicit DoglegStrategy(const TrustRegionStrategy::Options& options); // TrustRegionStrategy interface Summary ComputeStep(const PerSolveOptions& per_solve_options, SparseMatrix* jacobian, const double* residuals, double* step) final; void StepAccepted(double step_quality) final; void StepRejected(double step_quality) final; void StepIsInvalid() override; double Radius() const final; // These functions are predominantly for testing. Vector gradient() const { return gradient_; } Vector gauss_newton_step() const { return gauss_newton_step_; } Matrix subspace_basis() const { return subspace_basis_; } Vector subspace_g() const { return subspace_g_; } Matrix subspace_B() const { return subspace_B_; } private: using Vector2d = Eigen::Matrix; using Matrix2d = Eigen::Matrix; LinearSolver::Summary ComputeGaussNewtonStep( const PerSolveOptions& per_solve_options, SparseMatrix* jacobian, const double* residuals); void ComputeCauchyPoint(SparseMatrix* jacobian); void ComputeGradient(SparseMatrix* jacobian, const double* residuals); void ComputeTraditionalDoglegStep(double* step); bool ComputeSubspaceModel(SparseMatrix* jacobian); void ComputeSubspaceDoglegStep(double* step); bool FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const; Vector MakePolynomialForBoundaryConstrainedProblem() const; Vector2d ComputeSubspaceStepFromRoot(double lambda) const; double EvaluateSubspaceModel(const Vector2d& x) const; LinearSolver* linear_solver_; double radius_; const double max_radius_; const double min_diagonal_; const double max_diagonal_; // mu is used to scale the diagonal matrix used to make the // Gauss-Newton solve full rank. In each solve, the strategy starts // out with mu = min_mu, and tries values up to max_mu. If the user // reports an invalid step, the value of mu_ is increased so that // the next solve starts with a stronger regularization. // // If a successful step is reported, then the value of mu_ is // decreased with a lower bound of min_mu_. double mu_; const double min_mu_; const double max_mu_; const double mu_increase_factor_; const double increase_threshold_; const double decrease_threshold_; Vector diagonal_; // sqrt(diag(J^T J)) Vector lm_diagonal_; Vector gradient_; Vector gauss_newton_step_; // cauchy_step = alpha * gradient double alpha_; double dogleg_step_norm_; // When, ComputeStep is called, reuse_ indicates whether the // Gauss-Newton and Cauchy steps from the last call to ComputeStep // can be reused or not. // // If the user called StepAccepted, then it is expected that the // user has recomputed the Jacobian matrix and new Gauss-Newton // solve is needed and reuse is set to false. // // If the user called StepRejected, then it is expected that the // user wants to solve the trust region problem with the same matrix // but a different trust region radius and the Gauss-Newton and // Cauchy steps can be reused to compute the Dogleg, thus reuse is // set to true. // // If the user called StepIsInvalid, then there was a numerical // problem with the step computed in the last call to ComputeStep, // and the regularization used to do the Gauss-Newton solve is // increased and a new solve should be done when ComputeStep is // called again, thus reuse is set to false. bool reuse_; // The dogleg type determines how the minimum of the local // quadratic model is found. DoglegType dogleg_type_; // If the type is SUBSPACE_DOGLEG, the two-dimensional // model 1/2 x^T B x + g^T x has to be computed and stored. bool subspace_is_one_dimensional_; Matrix subspace_basis_; Vector2d subspace_g_; Matrix2d subspace_B_; }; } // namespace ceres::internal #include "ceres/internal/reenable_warnings.h" #endif // CERES_INTERNAL_DOGLEG_STRATEGY_H_