// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Authors: keir@google.com (Keir Mierle), // dgossow@google.com (David Gossow) #ifndef CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_ #define CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_ #include #include #include #include "ceres/cost_function.h" #include "ceres/internal/disable_warnings.h" #include "ceres/internal/export.h" #include "ceres/iteration_callback.h" #include "ceres/manifold.h" namespace ceres::internal { class ProblemImpl; // Callback that collects information about gradient checking errors, and // will abort the solve as soon as an error occurs. class CERES_NO_EXPORT GradientCheckingIterationCallback : public IterationCallback { public: GradientCheckingIterationCallback(); // Will return SOLVER_CONTINUE until a gradient error has been detected, // then return SOLVER_ABORT. CallbackReturnType operator()(const IterationSummary& summary) final; // Notify this that a gradient error has occurred (thread safe). void SetGradientErrorDetected(std::string& error_log); // Retrieve error status (not thread safe). bool gradient_error_detected() const { return gradient_error_detected_; } const std::string& error_log() const { return error_log_; } private: bool gradient_error_detected_; std::string error_log_; std::mutex mutex_; }; // Creates a CostFunction that checks the Jacobians that cost_function computes // with finite differences. This API is only intended for unit tests that intend // to check the functionality of the GradientCheckingCostFunction // implementation directly. CERES_NO_EXPORT std::unique_ptr CreateGradientCheckingCostFunction( const CostFunction* cost_function, const std::vector* manifolds, double relative_step_size, double relative_precision, const std::string& extra_info, GradientCheckingIterationCallback* callback); // Create a new ProblemImpl object from the input problem_impl, where all // cost functions are wrapped so that each time their Evaluate method is called, // an additional check is performed that compares the Jacobians computed by // the original cost function with alternative Jacobians computed using // numerical differentiation. If local parameterizations are given for any // parameters, the Jacobians will be compared in the local space instead of the // ambient space. For details on the gradient checking procedure, see the // documentation of the GradientChecker class. If an error is detected in any // iteration, the respective cost function will notify the // GradientCheckingIterationCallback. // // Note: This is quite inefficient and is intended only for debugging. // // relative_step_size and relative_precision are parameters to control // the numeric differentiation and the relative tolerance between the // jacobian computed by the CostFunctions in problem_impl and // jacobians obtained by numerically differentiating them. See the // documentation of 'numeric_derivative_relative_step_size' in solver.h for a // better explanation. CERES_NO_EXPORT std::unique_ptr CreateGradientCheckingProblemImpl( ProblemImpl* problem_impl, double relative_step_size, double relative_precision, GradientCheckingIterationCallback* callback); } // namespace ceres::internal #include "ceres/internal/reenable_warnings.h" #endif // CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_