// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/implicit_schur_complement.h" #include "Eigen/Dense" #include "ceres/block_sparse_matrix.h" #include "ceres/block_structure.h" #include "ceres/internal/eigen.h" #include "ceres/linear_solver.h" #include "ceres/parallel_for.h" #include "ceres/parallel_vector_ops.h" #include "ceres/types.h" #include "glog/logging.h" namespace ceres::internal { ImplicitSchurComplement::ImplicitSchurComplement( const LinearSolver::Options& options) : options_(options) {} void ImplicitSchurComplement::Init(const BlockSparseMatrix& A, const double* D, const double* b) { // Since initialization is reasonably heavy, perhaps we can save on // constructing a new object everytime. if (A_ == nullptr) { A_ = PartitionedMatrixViewBase::Create(options_, A); } D_ = D; b_ = b; compute_ftf_inverse_ = options_.use_spse_initialization || options_.preconditioner_type == JACOBI || options_.preconditioner_type == SCHUR_POWER_SERIES_EXPANSION; // Initialize temporary storage and compute the block diagonals of // E'E and F'E. if (block_diagonal_EtE_inverse_ == nullptr) { block_diagonal_EtE_inverse_ = A_->CreateBlockDiagonalEtE(); if (compute_ftf_inverse_) { block_diagonal_FtF_inverse_ = A_->CreateBlockDiagonalFtF(); } rhs_.resize(A_->num_cols_f()); rhs_.setZero(); tmp_rows_.resize(A_->num_rows()); tmp_e_cols_.resize(A_->num_cols_e()); tmp_e_cols_2_.resize(A_->num_cols_e()); tmp_f_cols_.resize(A_->num_cols_f()); } else { A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get()); if (compute_ftf_inverse_) { A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get()); } } // The block diagonals of the augmented linear system contain // contributions from the diagonal D if it is non-null. Add that to // the block diagonals and invert them. AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get()); if (compute_ftf_inverse_) { AddDiagonalAndInvert((D_ == nullptr) ? nullptr : D_ + A_->num_cols_e(), block_diagonal_FtF_inverse_.get()); } // Compute the RHS of the Schur complement system. UpdateRhs(); } // Evaluate the product // // Sx = [F'F - F'E (E'E)^-1 E'F]x // // By breaking it down into individual matrix vector products // involving the matrices E and F. This is implemented using a // PartitionedMatrixView of the input matrix A. void ImplicitSchurComplement::RightMultiplyAndAccumulate(const double* x, double* y) const { // y1 = F x ParallelSetZero(options_.context, options_.num_threads, tmp_rows_); A_->RightMultiplyAndAccumulateF(x, tmp_rows_.data()); // y2 = E' y1 ParallelSetZero(options_.context, options_.num_threads, tmp_e_cols_); A_->LeftMultiplyAndAccumulateE(tmp_rows_.data(), tmp_e_cols_.data()); // y3 = -(E'E)^-1 y2 ParallelSetZero(options_.context, options_.num_threads, tmp_e_cols_2_); block_diagonal_EtE_inverse_->RightMultiplyAndAccumulate(tmp_e_cols_.data(), tmp_e_cols_2_.data(), options_.context, options_.num_threads); ParallelAssign( options_.context, options_.num_threads, tmp_e_cols_2_, -tmp_e_cols_2_); // y1 = y1 + E y3 A_->RightMultiplyAndAccumulateE(tmp_e_cols_2_.data(), tmp_rows_.data()); // y5 = D * x if (D_ != nullptr) { ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols()); VectorRef y_cols(y, num_cols()); ParallelAssign( options_.context, options_.num_threads, y_cols, (Dref.array().square() * ConstVectorRef(x, num_cols()).array())); } else { ParallelSetZero(options_.context, options_.num_threads, y, num_cols()); } // y = y5 + F' y1 A_->LeftMultiplyAndAccumulateF(tmp_rows_.data(), y); } void ImplicitSchurComplement::InversePowerSeriesOperatorRightMultiplyAccumulate( const double* x, double* y) const { CHECK(compute_ftf_inverse_); // y1 = F x ParallelSetZero(options_.context, options_.num_threads, tmp_rows_); A_->RightMultiplyAndAccumulateF(x, tmp_rows_.data()); // y2 = E' y1 ParallelSetZero(options_.context, options_.num_threads, tmp_e_cols_); A_->LeftMultiplyAndAccumulateE(tmp_rows_.data(), tmp_e_cols_.data()); // y3 = (E'E)^-1 y2 ParallelSetZero(options_.context, options_.num_threads, tmp_e_cols_2_); block_diagonal_EtE_inverse_->RightMultiplyAndAccumulate(tmp_e_cols_.data(), tmp_e_cols_2_.data(), options_.context, options_.num_threads); // y1 = E y3 ParallelSetZero(options_.context, options_.num_threads, tmp_rows_); A_->RightMultiplyAndAccumulateE(tmp_e_cols_2_.data(), tmp_rows_.data()); // y4 = F' y1 ParallelSetZero(options_.context, options_.num_threads, tmp_f_cols_); A_->LeftMultiplyAndAccumulateF(tmp_rows_.data(), tmp_f_cols_.data()); // y += (F'F)^-1 y4 block_diagonal_FtF_inverse_->RightMultiplyAndAccumulate( tmp_f_cols_.data(), y, options_.context, options_.num_threads); } // Given a block diagonal matrix and an optional array of diagonal // entries D, add them to the diagonal of the matrix and compute the // inverse of each diagonal block. void ImplicitSchurComplement::AddDiagonalAndInvert( const double* D, BlockSparseMatrix* block_diagonal) { const CompressedRowBlockStructure* block_diagonal_structure = block_diagonal->block_structure(); ParallelFor(options_.context, 0, block_diagonal_structure->rows.size(), options_.num_threads, [block_diagonal_structure, D, block_diagonal](int row_block_id) { auto& row = block_diagonal_structure->rows[row_block_id]; const int row_block_pos = row.block.position; const int row_block_size = row.block.size; const Cell& cell = row.cells[0]; MatrixRef m(block_diagonal->mutable_values() + cell.position, row_block_size, row_block_size); if (D != nullptr) { ConstVectorRef d(D + row_block_pos, row_block_size); m += d.array().square().matrix().asDiagonal(); } m = m.selfadjointView().llt().solve( Matrix::Identity(row_block_size, row_block_size)); }); } // Similar to RightMultiplyAndAccumulate, use the block structure of the matrix // A to compute y = (E'E)^-1 (E'b - E'F x). void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) { const int num_cols_e = A_->num_cols_e(); const int num_cols_f = A_->num_cols_f(); const int num_cols = A_->num_cols(); const int num_rows = A_->num_rows(); // y1 = F x ParallelSetZero(options_.context, options_.num_threads, tmp_rows_); A_->RightMultiplyAndAccumulateF(x, tmp_rows_.data()); // y2 = b - y1 ParallelAssign(options_.context, options_.num_threads, tmp_rows_, ConstVectorRef(b_, num_rows) - tmp_rows_); // y3 = E' y2 ParallelSetZero(options_.context, options_.num_threads, tmp_e_cols_); A_->LeftMultiplyAndAccumulateE(tmp_rows_.data(), tmp_e_cols_.data()); // y = (E'E)^-1 y3 ParallelSetZero(options_.context, options_.num_threads, y, num_cols); block_diagonal_EtE_inverse_->RightMultiplyAndAccumulate( tmp_e_cols_.data(), y, options_.context, options_.num_threads); // The full solution vector y has two blocks. The first block of // variables corresponds to the eliminated variables, which we just // computed via back substitution. The second block of variables // corresponds to the Schur complement system, so we just copy those // values from the solution to the Schur complement. VectorRef y_cols_f(y + num_cols_e, num_cols_f); ParallelAssign(options_.context, options_.num_threads, y_cols_f, ConstVectorRef(x, num_cols_f)); } // Compute the RHS of the Schur complement system. // // rhs = F'b - F'E (E'E)^-1 E'b // // Like BackSubstitute, we use the block structure of A to implement // this using a series of matrix vector products. void ImplicitSchurComplement::UpdateRhs() { // y1 = E'b ParallelSetZero(options_.context, options_.num_threads, tmp_e_cols_); A_->LeftMultiplyAndAccumulateE(b_, tmp_e_cols_.data()); // y2 = (E'E)^-1 y1 ParallelSetZero(options_.context, options_.num_threads, tmp_e_cols_2_); block_diagonal_EtE_inverse_->RightMultiplyAndAccumulate(tmp_e_cols_.data(), tmp_e_cols_2_.data(), options_.context, options_.num_threads); // y3 = E y2 ParallelSetZero(options_.context, options_.num_threads, tmp_rows_); A_->RightMultiplyAndAccumulateE(tmp_e_cols_2_.data(), tmp_rows_.data()); // y3 = b - y3 ParallelAssign(options_.context, options_.num_threads, tmp_rows_, ConstVectorRef(b_, A_->num_rows()) - tmp_rows_); // rhs = F' y3 ParallelSetZero(options_.context, options_.num_threads, rhs_); A_->LeftMultiplyAndAccumulateF(tmp_rows_.data(), rhs_.data()); } } // namespace ceres::internal